當(dāng)前位置:
2021-2022學(xué)年湖南省長(zhǎng)沙市雨花區(qū)雅禮實(shí)驗(yàn)中學(xué)八年級(jí)(下)入學(xué)數(shù)學(xué)試卷>
試題詳情
閱讀材料:在處理分?jǐn)?shù)和分式的問(wèn)題時(shí),有時(shí)由于分子大于分母,或分子的次數(shù)高于分母的次數(shù),在實(shí)際運(yùn)算時(shí)難度較大,這時(shí),我們可將分?jǐn)?shù)(分式)拆分成一個(gè)整數(shù)(整式)與一個(gè)真分?jǐn)?shù)(分式)的和(差)的形式,通過(guò)對(duì)它的簡(jiǎn)單分析來(lái)解決問(wèn)題,我們稱這種方法為分離常數(shù)法,此法在處理分式或整除問(wèn)題時(shí)頗為有效.
如:x2-2x+3x-1=x(x-1)+x-2x+3x-1=x+(1-x)+2x-1=x-1+2x-1,這樣分式就拆分成一個(gè)分式2x-1與一個(gè)整式x-1的和的形式.根據(jù)以上閱讀材料,解答下列問(wèn)題:
(1)假分式x+6x+4用分離常數(shù)法可化為 1+2x+41+2x+4形式;
(2)利用分離常數(shù)法,求分式2x2+5x2+1的取值范圍;
(3)若分式5x2+9x-3x+2拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和(差)的形式為:5m-11+1n-6,求m2+n2+mn的最小值.
x
2
-
2
x
+
3
x
-
1
=
x
(
x
-
1
)
+
x
-
2
x
+
3
x
-
1
=
x
+
(
1
-
x
)
+
2
x
-
1
=
x
-
1
+
2
x
-
1
2
x
-
1
x
+
6
x
+
4
1
+
2
x
+
4
1
+
2
x
+
4
2
x
2
+
5
x
2
+
1
5
x
2
+
9
x
-
3
x
+
2
1
n
-
6
【考點(diǎn)】分式的加減法;分式的基本性質(zhì).
【答案】
1
+
2
x
+
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:533引用:1難度:0.6