如圖,在直角坐標(biāo)系中有Rt△AOB,O為坐標(biāo)原點,A(0,3),B(-1,0),將此三角形繞原點O順時針旋轉(zhuǎn)90°,得到Rt△COD,二次函數(shù)y=ax2+bx+c的圖象剛好經(jīng)過A,B,C三點.

(1)求二次函數(shù)的解析式及頂點P的坐標(biāo);
(2)過定點Q的直線l:y=kx-k+3與二次函數(shù)圖象相交于M,N兩點.
①若S△PMN=2,求k的值;
②證明:無論k為何值,△PMN恒為直角三角形;
③當(dāng)直線l繞著定點Q旋轉(zhuǎn)時,△PMN外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達(dá)式.
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3,P(1,4);(2)①;②見解析;③y=-2x2+4x+1.
k
=±
2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 12:0:1組卷:731引用:7難度:0.2
相似題
-
1.約定:若函數(shù)圖象上至少存在不同的兩點關(guān)于原點對稱,則把該函數(shù)稱為“黃金函數(shù)”,其圖象上關(guān)于原點對稱的兩點叫做一對“黃金點”.若點A(1,m),B(n,-4)是關(guān)于x的“黃金函數(shù)”y=ax2+bx+c(a≠0)上的一對“黃金點”,且該函數(shù)的對稱軸始終位于直線x=2的右側(cè),有結(jié)論①a+c=0;②b=4;③
a+14b+c<0;④-1<a<0.則下列結(jié)論正確的是( ?。?/h2>12發(fā)布:2025/6/14 11:0:2組卷:2232引用:14難度:0.3 -
2.如圖,拋物線y=ax2+3ax+4與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,且S△ABC=10,點P為第二象限內(nèi)拋物線上的一點,連接BP.
(1)求拋物線的解析式;
(2)如圖1,過點P作PD⊥x軸于點D,若∠BPD=2∠BCO,求的值;ADDB
(3)如圖2,設(shè)BP與AC的交點為Q,連接PC,是否存在點P,使S△PCQ=S△BCQ?若存在,求出點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/14 11:0:2組卷:762引用:7難度:0.1 -
3.已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/14 11:0:2組卷:1044引用:17難度:0.1
相關(guān)試卷