【概念理解】定義:我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形如圖①.
我們學(xué)習(xí)過(guò)的四邊形中是垂美四邊形的是 菱形、正方形菱形、正方形;(寫出一種即可)
【性質(zhì)探究】
利用圖①,垂美四邊形ABCD兩組對(duì)邊AB,CD的平方和與BC,AD的平方和之間的數(shù)量關(guān)系是 AD2+BC2=AB2+CD2AD2+BC2=AB2+CD2;
【性質(zhì)應(yīng)用】
(1)如圖②,在△ABC中,BC=6,AC=8,D,E分別是AB,BC的中點(diǎn),連接AE,CD,若AE⊥CD,則AB的長(zhǎng)為 271271;
(2)如圖③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC與BD交于O點(diǎn),BD與CE交于點(diǎn)F,AC與DE交于點(diǎn)G.若BE=6,AE=8,AB=12,求CD的長(zhǎng);
【拓展應(yīng)用】如圖④,在?ABCD中,點(diǎn)E、F、G分別是AD、AB、CD的中點(diǎn),EF⊥CF,AD=6,AB=8,求BG的長(zhǎng).
71
71
【考點(diǎn)】四邊形綜合題.
【答案】菱形、正方形;AD2+BC2=AB2+CD2;2
71
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:256引用:1難度:0.1
相似題
-
1.我們知道,一個(gè)正方形的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請(qǐng)分別畫出(只需各畫一個(gè),并說(shuō)明其形狀或邊、角關(guān)系特征,不必說(shuō)明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
2.如圖,∠BOD=45°,BO=DO,點(diǎn)A在OB上,四邊形ABCD是矩形,連接AC,BD交于點(diǎn)E,連接OE交AD于點(diǎn)F.下列4個(gè)判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點(diǎn)G是線段OF的中點(diǎn),則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號(hào))2發(fā)布:2024/12/23 18:30:1組卷:1467引用:7難度:0.3 -
3.四邊形ABCD是矩形,點(diǎn)E是射線BC上一點(diǎn),連接AC,DE.
(1)如圖1,點(diǎn)E在邊BC的延長(zhǎng)線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點(diǎn)E在邊BC的延長(zhǎng)線上,BE=AC,若M是DE的中點(diǎn),連接AM,CM,求證:AM⊥MC;
(3)如圖3,點(diǎn)E在邊BC上,射線AE交射線DC于點(diǎn)F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1406引用:10難度:0.4
把好題分享給你的好友吧~~