規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把a÷a÷a…÷an個a(a≠0)記作a?,讀作“a的圈n次方”
請你閱讀以上材料并完成下列問題:
(1)直接寫出計算結(jié)果:3⑧=136136,(-13)⑤=-27-27;
(2)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?仔細(xì)思考,將下列運算結(jié)果直接寫成冪的形式.5⑦=155155;(-2)⑩=128128;(-12)⑨=-27-27.
(3)計算:122÷(-13)④×(-2)⑤-(-13)⑥+32.
a
÷
a
÷
a
…
÷
a
n
個
a
1
3
6
1
3
6
1
3
1
5
5
1
5
5
1
2
8
1
2
8
1
2
1
3
1
3
【答案】;-27;;;-27
1
3
6
1
5
5
1
2
8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:37引用:2難度:0.5
相似題
-
1.觀察以下等式:
第1個等式:;23-11×2×3=12
第2個等式:;38-12×3×4=13
第3個等式:;415-13×4×5=14
第4個等式:;524-14×5×6=15
…
按照以上規(guī)律,解決下列問題:
(1)寫出第6個等式:;
(2)寫出你猜想的第n(n取正整數(shù))個等式:(用含n的等式表示),并驗證等式的正確性.發(fā)布:2025/5/24 0:0:1組卷:319引用:7難度:0.7 -
2.從1到2020連續(xù)自然數(shù)的平方和12+22+32+…+20202的個位數(shù)是( )
A.0 B.3 C.5 D.9 發(fā)布:2025/5/23 23:0:1組卷:190引用:2難度:0.5 -
3.提出問題:把1到2022這2022個數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4……(每隔一數(shù);擦去一數(shù)),轉(zhuǎn)圈擦下去,最后剩下的是哪個數(shù)?
問題探究:我們先從簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.
探究一:
如果只有1,2,很明顯,留下1,擦去2,最后剩下1;
如果只有1,2,3,4,如圖2所示,第一圈留下1,3擦去2,4;第二圈留下1,擦去3,最后剩下1;
如果只有1,2,3,4,5,6,7,8,如圖3所示,第一圈留下1,3,5,7擦去2,4,6,8;第二圈留下1,5擦去3,7;第三圈留下1,擦去5;最后剩下1;
如果只有1,2,3,…,16這16個數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4…(每隔一數(shù),擦去一數(shù)),轉(zhuǎn)圈擦下去,最后剩下的數(shù)是 ;
探究二:
如果只有1,2,3,4,5,6,7這7個數(shù),由探究一可知只有4個數(shù)時,最后剩下的是1,即4個數(shù)中的“第一個數(shù)”,因此只要剩下4個數(shù),即可知最后剩下的是哪個數(shù).也就是先擦掉7-4=3個數(shù),擦掉的第3個數(shù)是6,它的下一個數(shù)是7,也就是剩下的4個數(shù)中的第一個是7,所以最后剩下的數(shù)就是7;
如果只有1,2,3,…,12這12個數(shù),由探究一可知只有8個數(shù)時,最后剩下的是1,即8個數(shù)中的“第一個數(shù)”,因此只要剩下8個數(shù),即可知最后剩下的是哪個數(shù).也就是先擦掉12-8=4個數(shù),擦掉的第4個數(shù)是8,它的下一個數(shù)是9,也就是剩下的8個數(shù)中的第一個是9,所以最數(shù)學(xué)試題第7頁共8頁后剩下的數(shù)就是9;
仿照上面的探究方法,回答下列問題:
如果只有1,2,3,…,26這26個數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4……(每隔一數(shù),擦去一數(shù)),轉(zhuǎn)圈擦下去,最后剩下的數(shù)是 ;
問題解決:
把1到2022這2022個數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4……(每隔一數(shù),擦去一數(shù)),轉(zhuǎn)圈擦下去,最后剩下的數(shù)是 ;
一般規(guī)律:
把1,2,3,…,n這個數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4……(每隔一數(shù),擦去一數(shù)),轉(zhuǎn)圈擦下去,如果2k<n<2k+1,且n和k都是正整數(shù),則最后剩下的數(shù)是 ;(用n、k的代數(shù)式表示)
拓展延伸:
如果只有1,2,3,…,n這n個數(shù),且n5000,n是正整數(shù),按順時針方向依次排列在一個圓周上,從1開始按順時針方向,保留1,擦去2,保留3,擦去4…(每隔一數(shù),擦去一數(shù)),轉(zhuǎn)圈擦下去,如果最后剩下的數(shù)是2023,則n可以為 .發(fā)布:2025/5/24 0:30:1組卷:317引用:2難度:0.2