當(dāng)前位置:
2021-2022學(xué)年廣東省佛山市超盈實驗中學(xué)、美術(shù)實驗中學(xué)高二(下)第二次學(xué)業(yè)水平測試數(shù)學(xué)試卷>
試題詳情
政府鼓勵創(chuàng)新、創(chuàng)業(yè),銀行給予低息貸款.一位大學(xué)畢業(yè)生向自主創(chuàng)業(yè),經(jīng)過市場調(diào)研、測算,有兩個方案可供選擇.
方案1:開設(shè)一個科技小微企業(yè),需要一次性貸款40萬元,第一年獲利是貸款額的10%,以后每年比上一年增加25%的利潤.
方案2:開設(shè)一家食品小店,需要一次性貸款20萬元,第一年獲利是貸款額的15%,以后每年比上一年增加利潤1.5萬元.兩種方案使用期限都是10年,到期一次性還本付息.兩種方案均按年息2%的復(fù)利計算(參考數(shù)據(jù):1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的總收入分別有多少萬元?
(2)10年后,哪一種方案的利潤較大?
【考點(diǎn)】根據(jù)實際問題選擇函數(shù)類型.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:136引用:4難度:0.5
相似題
-
1.隨著科學(xué)技術(shù)的發(fā)展,放射性同位素技術(shù)已經(jīng)廣泛應(yīng)用于醫(yī)學(xué)、航天等眾多領(lǐng)域,并取得了顯著經(jīng)濟(jì)效益.假設(shè)某放射性同位素的衰變過程中,其含量P(單位:貝克)與時間t(單位:天)滿足函數(shù)關(guān)系P(t)=
,其中P0為t=0時該放射性同位素的含量.已知t=15時,該放射性同位素的瞬時變化率為P02-t30,則該放射性同位素含量為4.5貝克時,衰變所需時間為( ?。?/h2>-32ln210A.20天 B.30天 C.45天 D.60天 發(fā)布:2024/12/29 13:30:1組卷:145引用:10難度:0.7 -
2.隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為福清人喜愛的交通工具.據(jù)預(yù)測,福清某新能源汽車4S店從2023年1月份起的前x個月,顧客對比亞迪汽車的總需量R(x)(單位:輛)與x的關(guān)系會近似地滿足
(其中x∈N*且x≤6),該款汽車第x月的進(jìn)貨單價W(x)(單位:元)與x的近似關(guān)系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x個月的總需量R(x),求出第x月的需求量g(x)(單位:輛)與x的函數(shù)關(guān)系式;
(2)該款汽車每輛的售價為185000元,若不計其他費(fèi)用,則這個汽車4S店在2023年的第幾個月的月利潤f(x)最大,最大月利潤為多少元?發(fā)布:2024/12/29 11:30:2組卷:16引用:3難度:0.5 -
3.某工廠生產(chǎn)某種零件的固定成本為20000元,每生產(chǎn)一個零件要增加投入100元,已知總收入Q(單位:元)關(guān)于產(chǎn)量x(單位:個)滿足函數(shù):Q=
.400x-12x2,0≤x≤40080000,x>400
(1)將利潤P(單位:元)表示為產(chǎn)量x的函數(shù);(總收入=總成本+利潤)
(2)當(dāng)產(chǎn)量為何值時,零件的單位利潤最大?最大單位利潤是多少元?(單位利潤=利潤÷產(chǎn)量)發(fā)布:2024/12/29 13:0:1組卷:229引用:9難度:0.5
把好題分享給你的好友吧~~