定義:如果函數(shù)的圖象上至少存在不重合的兩點(a,b),(-a,-b),那么我們稱函數(shù)為“S函數(shù)”,這對點叫做“S函數(shù)”的S點.
(1)在下列關(guān)于x的函數(shù)中,是“S函數(shù)”的,請在后面的橫線上打“√”,不是“S函數(shù)”的打“×”.
①y=3x √√;②y=-2x+5 ××;③y=kx(k≠0)√√.
(2)若關(guān)于x的函數(shù)y=ax2+2x-3a是“S函數(shù)”,求該函數(shù)上的S點;
(3)若A,B記作“S函數(shù)”y=-43x的一組S點,以AB為邊作等邊△ABC,若點C在反比例函數(shù)y=kx上運動,“S函數(shù)”y=-x2-2bx+c一個S點是(2b,n)當2b≤x≤2時,是否存在實數(shù)b,使得“S函數(shù)”y=-x2-2bx+c的最大值為k,若存在,求出b的值,若不存在,請說明理由.
y
=
k
x
y
=
-
4
3
x
y
=
k
x
【考點】二次函數(shù)綜合題.
【答案】√;×;√
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/21 8:0:9組卷:351引用:1難度:0.2
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3667引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2668引用:7難度:0.7