在平面直角坐標(biāo)系xOy中,對于圖形G,若存在一個(gè)正方形γ,這個(gè)正方形的某條邊與x軸垂直,且圖形G上的所有的點(diǎn)都在該正方形的內(nèi)部或者邊上,則稱該正方形y為圖形G的一個(gè)正覆蓋.很顯然,如果圖形G存在一個(gè)正覆蓋,則它的正覆蓋有無數(shù)個(gè),我們將圖形G的所有正覆蓋中邊長最小的一個(gè),稱為它的緊覆蓋.如圖所示,圖形G為三條線段和一個(gè)圓弧組成的封閉圖形,圖中的三個(gè)正方形均為圖形G的正覆蓋,其中正方形ABCD就是圖形G的緊覆蓋.
??(1)對于一個(gè)圓心在坐標(biāo)原點(diǎn)(0,0)半徑為2的圓,它的緊覆蓋的邊長為 44;
(2)如圖1,點(diǎn)P為直線y=-2x+3上一動點(diǎn),若線段OP的緊覆蓋的邊長為2,求點(diǎn)P的坐標(biāo);
(3)如圖2,直線y=3x+3與x軸,y軸分別交于A,B.若在拋物線y=ax2+2ax-2(a≠0)上存在點(diǎn)C,使得△ABC的緊覆蓋的邊長為3,直接寫出a的取值范圍.
?
【考點(diǎn)】二次函數(shù)綜合題.
【答案】4
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/16 10:0:8組卷:80引用:1難度:0.1
相似題
-
1.已知函數(shù)y=
,記該函數(shù)圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當(dāng)m=2時(shí),
①已知M(4,n)在該函數(shù)圖象上,求n的值;
②當(dāng)0≤x≤2時(shí),求函數(shù)G的最大值.
(2)當(dāng)m>0時(shí),作直線x=m與x軸交于點(diǎn)P,與函數(shù)G交于點(diǎn)Q,若∠POQ=45°時(shí),求m的值;12
(3)當(dāng)m≤3時(shí),設(shè)圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B作BC⊥BA交直線x=m于點(diǎn)C,設(shè)點(diǎn)A的橫坐標(biāo)為a,C點(diǎn)的縱坐標(biāo)為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081引用:7難度:0.1 -
2.我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1 -
3.如圖,一條拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線段MN上移動.若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( ?。?/h2>
發(fā)布:2025/6/8 8:0:6組卷:4103引用:19難度:0.7