在平面直角坐標(biāo)系xOy中,過方程mx2+ny2=1(m,n∈R,m,n≠0)所確定的曲線C上點M(x0,y0)的直線與曲線C相切,則此切線的方程mx0x+ny0y=1.
(1)若m=n=14,直線l過(3,2)點被曲線C截得的弦長為2,求直線l的方程;
(2)若m=l,n=-13,點A是曲線C上的任意一點,曲線過點A的切線交直線l1:3x-y=0于M,交直線l2:3x+y=0于N,證明:MA+NA=0;
(3)若m=14,n=12,過坐標(biāo)原點斜率k>0的直線l3交C于P、Q兩點,且點P位于第一象限,點P在x軸上的投影為E,延長QE交C于點R,求PQ?PR的值.
1
4
3
1
3
3
3
MA
NA
0
1
4
1
2
PQ
?
PR
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:43引用:2難度:0.5
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:65引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7