在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過點A,過點B、C分別作l的垂線,垂足分別為點D、E.

(1)特例體驗:
如圖①,若直線l∥BC,AB=AC=2,分別求出線段BD、CE和DE的長;
(2)規(guī)律探究:
如圖②,若直線l從圖①狀態(tài)開始繞點A順時針旋轉(zhuǎn)a(45°<α<90°),與線段BC相交于點H,請再探線段BD、CE和DE的數(shù)量關系并說明理由;
(3)嘗試應用:
在圖②中,延長線段BD交線段AC于點F,若CE=3,DE=1,求S△BFC.
AB
=
AC
=
2
【考點】幾何變換綜合題.
【答案】(1)BD=CE=1,DE=2;
(2)DE=BD-CE,理由見解答.
(3).
(2)DE=BD-CE,理由見解答.
(3)
25
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/19 8:0:9組卷:95引用:1難度:0.3
相似題
-
1.已知D是等邊三角形ABC中AB邊上一點,將CB沿直線CD翻折得到CE,連接EA并延長交直線CD于點F.
(1)如圖1,若∠BCD=40°,直接寫出∠CFE的度數(shù);
(2)如圖1,若CF=10,AF=4,求AE的長;
(3)如圖2,連接BF,當點D在運動過程中,請?zhí)骄烤€段AF,BF,CF之間的數(shù)量關系,并證明.發(fā)布:2025/5/24 9:0:1組卷:345引用:3難度:0.1 -
2.【特例感知】
(1)如圖1,已知△AOB和△COD是等邊三角形,直接寫出線段AC與BD的數(shù)量關系是
;
【類比遷移】
(2)如圖2,△AOB和△COD是等腰直角三角形,∠BAO=∠DCO=90°,請寫出線段AC與BD的數(shù)量關系,并說明理由.
【方法運用】
如圖3,若AB=6,點C是線段AB外一動點,AC=2,連接BC.若將CB繞點C逆時針旋轉(zhuǎn)90°得到CD,連接AD,求出AD的最大值.3發(fā)布:2025/5/24 9:30:2組卷:1503引用:3難度:0.3 -
3.已知在△ABC中,O為BC邊的中點,連接AO,將△AOC繞點O順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角為鈍角),得到△EOF,連接AE,CF.
(1)如圖1,當∠BAC=90°且AB=AC時,則AE與CF滿足的數(shù)量關系是 ;
(2)如圖2,當∠BAC=90°且AB≠AC時,(1)中的結論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖3,延長AO到點D,使OD=OA,連接DE,當AO=CF=5,BC=6時,求DE的長.發(fā)布:2025/5/24 10:0:2組卷:2758引用:12難度:0.1