【問題提出】
我們知道:同弧或等弧所對的圓周角都相等,且等于這條弧所對的圓心角的一半,那么,在一個圓內(nèi)同一條弦所對的圓周角與圓心角之間又有什么關(guān)系呢?
【初步思考】
(1)如圖1,AB是⊙O的弦,∠AOB=100°,點P1、P2分別是優(yōu)弧AB和劣弧AB上的點,則∠AP1B=5050°,∠AP2B=130130°;
(2)如圖2,AB是⊙O的弦,圓心角∠AOB=m°(m<180°),點P是⊙O上不與A、B重合的一點,求弦AB所對的圓周角∠APB的度數(shù)為 (m2)°或180°-(m2)°(m2)°或180°-(m2)°;(用m的代數(shù)式表示)
【問題解決】
(3)如圖3,已知線段AB,點C在AB所在直線的上方,且∠ACB=135°,用尺規(guī)作圖的方法作出滿足條件的點C所組成的圖形(①直尺為無刻度直尺;②不寫作法,保留作圖痕跡);
【實際應(yīng)用】
(4)如圖4,在邊長為12的等邊三角形ABC中,點E、F分別是邊AC、BC上的動點,連接AF、BE,交于點P,若始終保持AE=CF,當點E從點A運動到點C時,點P運動的路徑長是 833π833π.
m
2
m
2
m
2
m
2
8
3
3
8
3
3
【考點】圓的綜合題.
【答案】50;130;()°或180°-()°;π
m
2
m
2
8
3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:551引用:3難度:0.5
相似題
-
1.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉(zhuǎn),得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3