已知橢圓Γ:x2a2+y2b2=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過點B(0,b)且與直線BF2垂直的直線交x軸負半軸于D,且2F1F2+F2D=0.
(1)求橢圓Γ的離心率;
(2)若過B、D、F2三點的圓恰好與直線l:x-3y-6=0相切,求橢圓Γ的方程;
(3)設a=2.過橢圓Γ右焦點F2且不與坐標軸垂直的直線l與橢圓Γ交于P、Q兩點,點M是點P關于x軸的對稱點,在x軸上是否存在一個定點N,使得M、Q、N三點共線?若存在,求出點N的坐標;若不存在,說明理由.
Γ
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
2
F
1
F
2
+
F
2
D
=
0
l
:
x
-
3
y
-
6
=
0
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:175引用:3難度:0.3
相似題
-
1.已知F1,F(xiàn)2是橢圓E:
+x2a2=1(a>b>0)的左右焦點,過F2作長軸的垂線,在第一象限和橢圓交于點H,且tan∠HF1F2=y2b2.34
(1)求橢圓的離心率;
(2)若橢圓的準線方程為x=±4,一條過原點O的動直線l1與橢圓交于A,B兩點,N為橢圓上滿足|NA|=|NB|的一點,試求5+1|OA|2+1|OB|2的值;2|ON|2
(3)設動直線l2:y=kx+m與橢圓有且只有一個公共點P,且與直線x=4相交于點Q,若x軸上存在一定點M(1,0),使得PM⊥QM,求橢圓的方程.發(fā)布:2024/12/1 8:0:1組卷:29引用:1難度:0.1 -
2.動點M(x,y)與定點F(4,0)的距離和它到定直線l:x=
的距離的比是常數(shù)94.43
(1)求動點M的軌跡方程;
(2)直線l:y=kx+b與M的軌跡交于A,B兩點,AB的中點坐標為(6,2),求直線l的方程.發(fā)布:2024/12/6 23:0:1組卷:281引用:4難度:0.5 -
3.定義:圓錐曲線
的兩條相互垂直的切線的交點Q的軌跡是以坐標原點為圓心,C:x2a2+y2b2=1為半徑的圓,這個圓稱為蒙日圓.已知橢圓C的方程為a2+b2,P是直線l:x+2y-3=0上的一點,過點P作橢圓C的兩條切線與橢圓相切于M、N兩點,O是坐標原點,連接OP,當∠MPN為直角時,則kOP=( ?。?/h2>x25+y24=1A. 或-3443B. 或0125C. 或-95125D. 或0-43發(fā)布:2024/12/3 6:0:1組卷:122引用:3難度:0.6
把好題分享給你的好友吧~~