近年來,購買盲盒成為當(dāng)下年輕人的潮流之一,為了引導(dǎo)青少年正確消費(fèi),國家市場監(jiān)管總局提出,盲盒經(jīng)營行為應(yīng)規(guī)范指引,經(jīng)營者不能變相誘導(dǎo)消費(fèi).盲盒最吸引人的地方,是因為盒子上沒有標(biāo)注,只有打開才會知道自己買到了什么,這種不確定性的背后就是概率.幾何分布是概率論中非常重要的一個概率模型,可描述如下:在獨(dú)立的伯努利(Bernoulli)試驗中,若所考慮事件首次出現(xiàn),則試驗停止,此時所進(jìn)行的試驗次數(shù)X服從幾何分布,事件發(fā)生的概率p即為幾何分布的參數(shù),記作X~G(p).幾何分布有如下性質(zhì):分布列為P(X=k)=(1-p)k-1p,k=1,2,…,n,…,期望E(X)=+∞∑k=1k(1-p)k-1?p=1p.現(xiàn)有甲文具店推出四種款式不同、單價相同的文具盲盒,數(shù)量足夠多,購買規(guī)則及概率規(guī)定如下:每次購買一個,且買到任意一種款式的文具盲盒是等可能的.
(1)現(xiàn)小嘉欲到甲文具店購買文具盲盒.
①求他第二次購買的文具盲盒的款式與第一次購買的不同的概率;
②設(shè)他首次買到兩種不同款式的文具盲盒時所需要的購買次數(shù)為Y,求Y的期望;
(2)若甲文具店的文具盲盒的單價為12元,乙文具店出售與甲文具店款式相同的非盲盒文具且單價為18元.小興為了買齊這四種款式的文具,他應(yīng)選擇去哪家文具店購買更省錢,并說明理由.
E
(
X
)
=
+
∞
∑
k
=
1
k
(
1
-
p
)
k
-
1
?
p
=
1
p
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望);離散型隨機(jī)變量及其分布列.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/30 10:0:2組卷:119引用:4難度:0.5
相似題
-
1.每年5月17日為國際電信日,某市電信公司每年在電信日當(dāng)天對辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當(dāng)天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機(jī)變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
2.某工廠有甲、乙、丙三條生產(chǎn)線同時生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學(xué)期望為 .
發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6 -
3.隨機(jī)變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:211引用:9難度:0.6
把好題分享給你的好友吧~~