如果一個正整數(shù)能表示為兩個連續(xù)奇數(shù)的平方差,那么稱這個正整數(shù)為“奇特數(shù)”.例如:8=32-12,16=52-32,24=72-52;則8、16、24這三個數(shù)都是奇特數(shù).
(1)32這個數(shù)是奇特數(shù)嗎?若是,表示成兩個連續(xù)奇數(shù)的平方差形式.
(2)設(shè)兩個連續(xù)奇數(shù)是2n-1和2n+1(其中n取正整數(shù)),由這兩個連續(xù)奇數(shù)構(gòu)造的奇特數(shù)是8的倍數(shù)嗎?為什么?
(3)如圖所示,拼疊的正方形邊長是從1開始的連續(xù)奇數(shù)…,按此規(guī)律拼疊到正方形ABCD,其邊長為39,求陰影部分的面積.
【答案】(1)是,32=92-72;
(2)是,理由見解析;
(3)800.
(2)是,理由見解析;
(3)800.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/4 8:0:5組卷:287引用:3難度:0.5