建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過點B,過A作AD⊥ED于D,過C作CE⊥ED于E.則易證△ADB≌△BEC.這個模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉化為橫平豎直的線段和直角,所以在平面直角坐標系中被大量使用.
模型應用:
(1)如圖2,點A(0,4),點B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點C在第一象限,求點C的坐標;
②若AB為直角邊,求點C的坐標;
(2)如圖3,長方形MFNO,O為坐標原點,F(xiàn)的坐標為(8,6),M、N分別在坐標軸上,P是線段NF上動點,設PN=n,已知點G在第一象限,且是直線y=2x一6上的一點,若△MPG是以G為直角頂點的等腰直角三角形,請直接寫出點G的坐標.

【考點】一次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/17 8:0:9組卷:1792引用:4難度:0.2
相似題
-
1.如圖,點A、B的坐標分別為(0,2),(3,4),點P為x軸上的一點,若點B關于直線AP的對稱點B′恰好落在x軸上,則點P的坐標為.
發(fā)布:2025/6/19 10:30:2組卷:5839引用:57難度:0.4 -
2.如圖,四邊形OABC是矩形,點A、C在坐標軸上,△ODE是△OCB繞點O順時針旋轉90°得到的,點D在x軸上,直線BD交y軸于點F,交OE于點H,線段BC、OC的長是方程x2-6x+8=0的兩個根,且OC>BC.
(1)求直線BD的解析式;
(2)求△OFH的面積;
(3)點M在坐標軸上,平面內(nèi)是否存在點N,使以點D、F、M、N為頂點的四邊形是矩形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.發(fā)布:2025/6/19 10:30:2組卷:5681引用:54難度:0.5 -
3.如圖,直線y=-
x+8與x軸交于A點,與y軸交于B點,動點P從A點出發(fā),以每秒2個單位的速度沿AO方向向點O勻速運動,同時動點Q從B點出發(fā),以每秒1個單位的速度沿BA方向向點A勻速運動,當一個點停止運動,另一個點也隨之停止運動,連接PQ,設運動時間為t(s)(0<t≤3).43
(1)寫出A,B兩點的坐標;
(2)設△AQP的面積為S,試求出S與t之間的函數(shù)關系式;并求出當t為何值時,△AQP的面積最大?
(3)當t為何值時,以點A,P,Q為頂點的三角形與△ABO相似,并直接寫出此時點Q的坐標.發(fā)布:2025/6/19 10:30:2組卷:7396引用:54難度:0.1