數(shù)學(xué)模型學(xué)習(xí)與應(yīng)用:
白日登山望峰火,黃昏飲馬傍交河.——《古從軍行》唐李欣
模型學(xué)習(xí):詩中隱含著一個(gè)有趣的數(shù)學(xué)問題,我們稱之為“將軍飲馬”問題.關(guān)鍵是利用軸對稱變換,把直線同側(cè)兩點(diǎn)的折線問題轉(zhuǎn)化為直線兩側(cè)的線段問題,從而解決距離和最短的一類問題,“將軍飲馬”問題的數(shù)學(xué)模型如圖1所示:在直線l上存在點(diǎn)P,使PA+PB的值最小.
作法:作A點(diǎn)關(guān)于直線l的對稱點(diǎn)A',連接A'B,A'B與直線l的交點(diǎn)即為點(diǎn)P.此時(shí)PA+PB的值最?。?br />模型應(yīng)用:
(1)如圖2,已知△ABC為等邊三角形,高AH=8cm,P為AH上一動(dòng)點(diǎn),D為AB的中點(diǎn).
①當(dāng)PD+PB的最小值時(shí),在圖中確定點(diǎn)P的位置(要有必要的畫圖痕跡,不用寫畫法).
②則PD+PB的最小值為 88cm.
模型變式:
(2)如圖3所示,某地有塊三角形空地AOB,已知∠AOB=30°,P是△AOB內(nèi)一點(diǎn),連接PO后測得PO=10米,現(xiàn)當(dāng)?shù)卣谌切慰盏谹OB中修一個(gè)三角形花壇PQR,點(diǎn)Q,R分別是OA,OB邊上的任意一點(diǎn)(不與各邊頂點(diǎn)重合),求△PQR周長的最小值.
【考點(diǎn)】幾何變換綜合題.
【答案】8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 1:0:1組卷:505引用:1難度:0.2
相似題
-
1.已知D是等邊三角形ABC中AB邊上一點(diǎn),將CB沿直線CD翻折得到CE,連接EA并延長交直線CD于點(diǎn)F.
(1)如圖1,若∠BCD=40°,直接寫出∠CFE的度數(shù);
(2)如圖1,若CF=10,AF=4,求AE的長;
(3)如圖2,連接BF,當(dāng)點(diǎn)D在運(yùn)動(dòng)過程中,請?zhí)骄烤€段AF,BF,CF之間的數(shù)量關(guān)系,并證明.發(fā)布:2025/5/24 9:0:1組卷:345引用:3難度:0.1 -
2.【特例感知】
(1)如圖1,已知△AOB和△COD是等邊三角形,直接寫出線段AC與BD的數(shù)量關(guān)系是
;
【類比遷移】
(2)如圖2,△AOB和△COD是等腰直角三角形,∠BAO=∠DCO=90°,請寫出線段AC與BD的數(shù)量關(guān)系,并說明理由.
【方法運(yùn)用】
如圖3,若AB=6,點(diǎn)C是線段AB外一動(dòng)點(diǎn),AC=2,連接BC.若將CB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到CD,連接AD,求出AD的最大值.3發(fā)布:2025/5/24 9:30:2組卷:1503引用:3難度:0.3 -
3.已知在△ABC中,O為BC邊的中點(diǎn),連接AO,將△AOC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角為鈍角),得到△EOF,連接AE,CF.
(1)如圖1,當(dāng)∠BAC=90°且AB=AC時(shí),則AE與CF滿足的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)∠BAC=90°且AB≠AC時(shí),(1)中的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖3,延長AO到點(diǎn)D,使OD=OA,連接DE,當(dāng)AO=CF=5,BC=6時(shí),求DE的長.發(fā)布:2025/5/24 10:0:2組卷:2758引用:12難度:0.1