小明同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組全等的三角形,小明把具有這個規(guī)律的圖形稱為“手拉手”圖形.
(1)問題發(fā)現(xiàn):如圖1,若△ABC和△ADE均是頂角為40°的等腰三角形,BC、DE分別是底邊,求證:BD=CE;
(2)拓展探究:如圖2,若△ACB和△DCE均為等邊三角形,點A、D、E在同一條直線上,連接BE,則∠AEB的度數(shù)為 60°60°;線段BE與AD之間的數(shù)量關(guān)系是 BE=ADBE=AD;
(3)解決問題:如圖3,若△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一條直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系并說明理由.

【考點】三角形綜合題.
【答案】60°;BE=AD
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:3126引用:15難度:0.4
相似題
-
1.在△ABC和△CDE中,∠ACB=∠ECD=90°,AC=BC,點D是CB延長線上一動點,點E在線段AC上,連接DE與AB交于點F.
(1)如圖1,若∠EDC=30°,EF=4,求AF的長.
(2)如圖2,若BD=AE,求證:AF=AC+BD.2
(3)如圖3,移動點D,使得點F是線段AB的中點時,DB=,AB=472,點P,Q分別是線段AC,BC上的動點,且AP=CQ,連接DP,F(xiàn)Q,請直接寫出DP+FQ的最小值.2發(fā)布:2025/6/14 11:0:2組卷:822引用:3難度:0.2 -
2.(1)觀察猜想
如圖1,在△ABC中,AB=AC,∠BAC=60°,點D是∠BAC的平分線上一動點,連接DB,將線段DB繞點D逆時針旋轉(zhuǎn)60°得到線段DE,連接BE,CE.
①的值是 ;ADCE
②射線AD與直線CE相交所成的較小角的度數(shù)是 .
(2)類比探究
如圖2,在△ABC中,AB=AC,∠BAC=90°,點D是∠BAC的平分線上一動點,連接DB,將線段DB繞點D逆時針旋轉(zhuǎn)90°得到線段DE,連接BE,CE.請寫出的值及射線AD與直線CE相交所成的較小角的度數(shù),并就圖2的情形說明理由.ADCE
(3)拓展延伸
在(2)的條件下,若AB=1,請直接寫出當(dāng)∠DBC=15°時,CE=.發(fā)布:2025/6/14 11:30:1組卷:267引用:4難度:0.1 -
3.已知:△ABC是等腰直角三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點P在線段AB上,且AC=2,PA=1,則:2
①線段PB=,PC=;
②猜想:PA2,PB2,PQ2三者之間的數(shù)量關(guān)系為 ;
(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結(jié)論仍然成立,請你利用圖②給出證明過程;
(3)若動點P滿足=PAPB,請直接寫出13的值.PCAC發(fā)布:2025/6/14 10:30:2組卷:216引用:3難度:0.2