設(shè)函數(shù)f(x)=-x(x-a)2(x∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值;
(3)當(dāng)a>3時(shí),證明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)對(duì)任意的x∈R恒成立.
【考點(diǎn)】利用導(dǎo)數(shù)求解函數(shù)的極值.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:94引用:1難度:0.4
相似題
-
1.設(shè)函數(shù)f(x)=x3+2x2-4x+1.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 12:0:2組卷:92引用:5難度:0.7 -
2.已知函數(shù)f(x)=x-lnx.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:277引用:8難度:0.6 -
3.已知函數(shù)f(x)=ax2-blnx在點(diǎn)A(1,f(1))處的切線方程為y=1;
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:559引用:3難度:0.5
相關(guān)試卷