如圖1,⊙I與直線a相離,過圓心I作直線a的垂線,垂足為H,且交⊙I于P,Q兩點(Q在P,H之間)我們把點P稱為⊙I關于直線a的“遠點”,把PQ?PH的值稱為⊙I關于直線a的“特征數(shù)”.
(1)如圖2,在平面直角坐標系xOy中,點E的坐標為(0,4),半徑為1的⊙O與兩坐標軸交于點A,B,C,D.
①過點E作垂直于y軸的直線m,則⊙O關于直線m的“遠點”是點 DD(填“A”,“B”,“C”或“D”),⊙O關于直線m的“特征數(shù)”為 1010;
②若直線n的函數(shù)表達式為y=3x+4,求⊙O關于直線n的“特征數(shù)”;
(2)在平面直角坐標系xOy中,直線l經(jīng)過點M(1,4),點F是坐標平面內(nèi)一點,以F為圓心,3為半徑作⊙F.若⊙F與直線l相離,點N(-1,0)是⊙F關于直線l的“遠點”,且⊙F關于直線l的“特征數(shù)”是66,直接寫出直線l的函數(shù)解析式.

3
3
6
【考點】圓的綜合題.
【答案】D;10
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/12 4:0:8組卷:666引用:3難度:0.1
相似題
-
1.在⊙O中,已知AB為直徑,C、D是⊙O上兩點,且C、D在AB的兩側(cè),OD⊥AB,CD交AB于E點,過E作EF∥BC交AC于F點.
(1)求證:CD平分∠ACB;
(2)若AF:CF=1:2,且CE=2,求△ACE的面積.發(fā)布:2025/6/16 4:0:2組卷:73引用:2難度:0.5 -
2.請閱讀下面材料,并完成相應的任務;
阿基米德折弦定理
阿基米德(Archimedes,公元前287-公元前212年,古希臘)是有史以來最偉大的數(shù)學家之一,他與牛頓、高斯并稱為三大數(shù)學王子.
阿拉伯Al-Biruni(973年-1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從點M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.?ABC
這個定理有很多證明方法,下面是運用“垂線法”證明CD=AB+BD的部分證明過程.
證明:如圖2,過點M作MH⊥射線AB,垂足為點H,連接MA,MB,MC.
∵M是的中點,?ABC
∴MA=MC.
…
任務:
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖3,已知等邊三角形ABC內(nèi)接于⊙O,D為上一點,∠ABD=15°,CE⊥BD于點E,CE=2,連接AD,則△DAB的周長是 .?AC發(fā)布:2025/6/15 17:30:2組卷:757引用:4難度:0.1 -
3.如圖,直角坐標系中,直線y=kx+b分別交x,y軸于點A(-8,0),B(0,6),C(m,0)是射線AO上一動點,⊙P過B,O,C三點,交直線AB于點D(B,D不重合).
(1)求直線AB的函數(shù)表達式.
(2)若點D在第一象限,且tan∠ODC=,求點D的坐標.53
(3)當△ODC為等腰三角形時,求出所有符合條件的m的值.
(4)點P,Q關于OD成軸對稱,當點Q恰好落在直線AB上時,直接寫出此時BQ的長.發(fā)布:2025/6/16 6:0:1組卷:324引用:5難度:0.1