背景介紹:勾股定理是幾何學(xué)中的明珠,充滿著魅力,千百年來(lái),人們對(duì)它的證明精彩粉呈,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.
小試牛刀:把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a,b,c.顯然,∠DAB=∠B=90°,AC⊥DE,請(qǐng)用a,b,c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:

S梯形ABCD=12a(a+b)12a(a+b),S△EBC=12b(a-b)12b(a-b),S四邊形AECD=12c212c2,則它們滿足的關(guān)系式為 12a(a+b)=12b(a-b)+12c212a(a+b)=12b(a-b)+12c2,經(jīng)化簡(jiǎn),可得到勾股定理.(提示:對(duì)角線互相垂直的四邊形面積等于對(duì)角線乘積的一半)
知識(shí)運(yùn)用:
(1)如圖2,鐵路上A,B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C,D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 4141千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請(qǐng)用尺規(guī)作圖在圖3中作出P點(diǎn)的位置并求出AP的距離.
(3)知識(shí)遷移:借助上面的思考過(guò)程與幾何模型,求代數(shù)式x2+9+(16-x)2+81的最小值 2020(0<x<16).
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
x
2
+
9
(
16
-
x
)
2
+
81
【考點(diǎn)】三角形綜合題.
【答案】a(a+b);b(a-b);c2;a(a+b)=b(a-b)+c2;41;20
1
2
1
2
1
2
1
2
1
2
1
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:728引用:4難度:0.3
相似題
-
1.已知在平面直角坐標(biāo)系中,點(diǎn)A(a,b)滿足
=0,AB⊥x軸于點(diǎn)B.12a-3+(2-b)2
(1)點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為;
(2)如圖1,若點(diǎn)M在x軸上,連接MA,使S△ABM=2,求出點(diǎn)M的坐標(biāo);
(3)如圖2,P是線段AB所在直線上一動(dòng)點(diǎn),連接OP,OE平分∠PON,交直線AB于點(diǎn)E,作OF⊥OE,當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄俊螼PE與∠FOP的數(shù)量關(guān)系,并證明.發(fā)布:2025/6/7 7:0:1組卷:642引用:7難度:0.3 -
2.探究
(1)【問(wèn)題初探】
如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點(diǎn),且DE=CE,連接BD.直接寫(xiě)出BD與AC的位置關(guān)系和數(shù)量關(guān)系:;
(2)【問(wèn)題改編】
如圖2,在△ABE和△CDE中,∠AEB=∠CED=90°,AE=BE,DE=CE,連接BD,AC.求證:BD⊥AC;
(3)【問(wèn)題拓展】
如圖3,將(2)中的“90°”改為“60°”,(2)中的其他條件不變,若BD與AC交于點(diǎn)F,求∠DFC的度數(shù).發(fā)布:2025/6/7 9:0:2組卷:32引用:2難度:0.2 -
3.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足
+|b-8|=0.a-6
(1)a=;b=.
(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P,Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)O勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速移動(dòng),點(diǎn)P到達(dá)O點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(4,3),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
問(wèn):是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,若∠DOC=∠DCO,點(diǎn)G是第二象限中一點(diǎn),并且y軸平分∠GOD.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連接CE交OD于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過(guò)程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論.發(fā)布:2025/6/7 7:30:1組卷:146引用:1難度:0.1