“三等分角”是數(shù)學(xué)史上一個(gè)著名問題,數(shù)學(xué)家們證明只使用尺規(guī)無法三等分一個(gè)任意角,但對于特定度數(shù)的已知角,如90°角、45°角、108°角等可以用尺規(guī)三等分,如果作圖工具沒有限制,將條件放寬,將任意角三等分是可以解決的.
(1)用尺規(guī)三等分特殊角.
例題解讀:如圖1,∠AOB=90°,在邊OB上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的平分線OE,則射線OD,OE將∠AOB三等分.
?問題1:如圖2,∠MON=45°,請用尺規(guī)把∠MON三等分.(不需寫作法,但需保留作圖痕跡)
(2)折紙三等分任意銳角.
步驟一:在正方形紙片上折出任意∠SBC,將正方形ABCD對折,折痕記為MN,再將矩形MBCN對折,折痕記為EF,得到圖3;
步驟二:翻折正方形紙片使點(diǎn)B的對應(yīng)點(diǎn)T在EF上,點(diǎn)M的對應(yīng)點(diǎn)P在SB上,點(diǎn)E對折后的對應(yīng)點(diǎn)記為Q,折痕記為GH,得到圖4;
步驟三:折出射線BQ,BT,得到圖5,則射線BQ,BT就是∠SBC的三等分線.
下面是證明射線BQ,BT是∠SBC三等分線的部分過程.
證明:如圖5,過點(diǎn)T作TK⊥BC,垂足為K,則四邊形EBKT為矩形.
根據(jù)折疊的性質(zhì),得EB=QT,∠EBT=∠QTB,BT=TB.
∴△EBT≌△QTB(SAS).
∴∠BQT=∠TEB=90°.
∴BQ⊥PT.
?
問題2:①將剩余部分的證明過程補(bǔ)充完整;
②若將圖3中的點(diǎn)S與點(diǎn)D重合,重復(fù)(2)中的操作過程得到圖6,請利用圖6計(jì)算tan15°的值,請直接寫出結(jié)果.
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/16 8:0:9組卷:75引用:1難度:0.5
相似題
-
1.如圖①,矩形ABCD中,AB=12,AD=25,延長CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點(diǎn)E落在BC上的點(diǎn)F處,連接DF.△ABE從點(diǎn)B出發(fā),沿線段BC以每秒3個(gè)單位的速度平移得到△A′B′E′,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE又從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移,當(dāng)點(diǎn)E′到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)線段DF的長度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請直接寫出面積S與運(yùn)動(dòng)時(shí)
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移時(shí),設(shè)A′B′
交射線FD于點(diǎn)M,交線段AD于點(diǎn)N,是否存在某一時(shí)刻t,使得△DMN為等腰三角形?若存在,請求出相應(yīng)的t值;若不存在,請說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
2.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點(diǎn)E、M,另一邊分別與射線DB、射線DC交于點(diǎn)F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長交射線AB于點(diǎn)K,求線段BK的長.14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9 -
3.已知:如圖1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,cot∠ABC=
,點(diǎn)E在AD邊上,且AE=3ED,EF∥AB,EF交BC于點(diǎn)F,點(diǎn)M、N分別在射線FE和線段CD上.12
(1)求線段CF的長;
(2)如圖2,當(dāng)點(diǎn)M在線段FE上,且AM⊥MN,設(shè)FM?cos∠EFC=x,CN=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果△AMN為等腰直角三角形,求線段FM的長.發(fā)布:2025/1/21 8:0:1組卷:95引用:3難度:0.2
相關(guān)試卷