閱讀下面的解答過程.
計算:11×2+12×3+13×4+…+19×10.
解:因為11×2=1-12,12×3=12-13,13×4=13-14,…,19×10=19-110,
所以原式=(1-12)+(12-13)+(13-14)+…+(19-110)
=1+(-12+12)+(-13+13)+…+(-19+19)-110
=1-110
=910.
根據(jù)以上解題方法計算:
(1)1n(n+1)=1n-1n+11n-1n+1(n為正整數(shù));
(2)1-12-16-112-120-130-142.
(3)12×4+14×6+16×8+…+12018×2020.
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
9
×
10
1
1
×
2
=
1
-
1
2
,
1
2
×
3
=
1
2
-
1
3
,
1
3
×
4
=
1
3
-
1
4
,…,
1
9
×
10
=
1
9
-
1
10
(
1
-
1
2
)
+
(
1
2
-
1
3
)
+
(
1
3
-
1
4
)
+
…
+
(
1
9
-
1
10
)
1
+
(
-
1
2
+
1
2
)
+
(
-
1
3
+
1
3
)
+
…
+
(
-
1
9
+
1
9
)
-
1
10
1
-
1
10
9
10
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
-
1
2
-
1
6
-
1
12
-
1
20
-
1
30
-
1
42
1
2
×
4
+
1
4
×
6
+
1
6
×
8
+
…
+
1
2018
×
2020
【答案】-
1
n
1
n
+
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:327引用:5難度:0.8
相似題
-
1.(1)計算:1-2+3-4+5-6…+99-100;
(2)計算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6 -
2.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3 -
3.在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設:S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3