如圖1,△ABC和△ADE為直角三角形,∠ABC=∠ADE=90°,∠BAC=∠DAE=a,連接BD,以BD為直角邊作直角三角形BDF(B,D,F(xiàn)按順時針排列),且∠BDF=a,連接CE,CF,△ADE繞點(diǎn)A旋轉(zhuǎn),
(1)如圖2,當(dāng)a=45°時,判斷DF與CE之間的數(shù)量和位置關(guān)系,并證明;
(2)當(dāng)a=30°時,若AD=3,AB=21,且DE⊥EC時,直接寫出四邊形DECF的面積.

21
【考點(diǎn)】幾何變換綜合題.
【答案】(1)DF∥CE,DF=CE;
(2)2或8.
(2)2
3
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:177引用:1難度:0.1
相似題
-
1.綜合與實(shí)踐
“手拉手”模型是初中幾何圖形的一種全等變形的重要模型,可以借助旋轉(zhuǎn)和全等形的相關(guān)知識結(jié)合勾股定理等,來解決有關(guān)線段的長、角的度數(shù)等問題,在學(xué)習(xí)和生活中應(yīng)用廣泛,有著十分重要的地位和作用.
某校數(shù)學(xué)活動小組進(jìn)行了有關(guān)旋轉(zhuǎn)的系列探究:
如圖①,已知△ABC和△ADE均是等腰直角三角形,∠BAC=∠DAE=90°,且AB=AC,AD=AE,易證:BD=CE,BD⊥CE.
深入探究:
(1)如圖②,將圖①中△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<90°),連接BD、CE,并延長CE分別與AB、BD相交于點(diǎn)G、F,求證:BD=CE,BD⊥CE.
解決問題:
(2)如圖③,將圖①中△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)90°,使AE與AB重合,其他條件不變,若AB=6,AD=3,則CE=,DF=.
拓展應(yīng)用:
(3)如圖④,將圖①中△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)α(90°<α<180°),連接BD、CE,若AB=4,BE=3,∠ABE=45°,則BD=,AD=.2
(提示:求AD時,可過點(diǎn)E作EH⊥AB于點(diǎn)H)發(fā)布:2025/5/25 7:30:1組卷:887引用:2難度:0.2 -
2.如圖,已知△ABC和△ADE均為等腰三角形,AC=BC,DE=AE,將這兩個三角形放置在一起.
(1)問題發(fā)現(xiàn):
如圖①,當(dāng)∠ACB=∠AED=60°時,點(diǎn)B、D、E在同一直線上,連接CE,則線段BD、CE之間的數(shù)量關(guān)系是,∠CEB=°;
(2)拓展探究:
如圖②,當(dāng)∠ACB=∠AED=α?xí)r,點(diǎn)B、D、E不在同一直線上,連接CE,求出線段BD、CE之間的數(shù)量關(guān)系及BD、CE所在直線相交所成的銳角的大?。ǘ加煤恋氖阶颖硎荆⒄f明理由;
(3)解決問題:
如圖③,∠ACB=∠AED=90°,AC=,AE=10,連接CE、BD,在△AED繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)CE所在的直線垂直于AD時,請你直接寫出BD的長.2發(fā)布:2025/5/25 4:30:1組卷:1343引用:2難度:0.1 -
3.如圖1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D為△ABC內(nèi)部的一動點(diǎn)(不在邊上),連接BD,將線段BD繞點(diǎn)D逆時針旋轉(zhuǎn)60°,使點(diǎn)B到達(dá)點(diǎn)F的位置;將線段AB繞點(diǎn)B順時針旋轉(zhuǎn)60°,使點(diǎn)A到達(dá)點(diǎn)E的位置,連接AD,CD,AE,AF,BF,EF.
(1)求證:△BDA≌△BFE;
(2)①CD+DF+FE的最小值為 ;
②當(dāng)CD+DF+FE取得最小值時,求證:AD∥BF.
(3)如圖2,M,N,P分別是DF,AF,AE的中點(diǎn),連接MP,NP,在點(diǎn)D運(yùn)動的過程中,請判斷∠MPN的大小是否為定值.若是,求出其度數(shù);若不是,請說明理由.發(fā)布:2025/5/25 8:0:2組卷:2338引用:3難度:0.5
相關(guān)試卷