已知,點O是等邊△ABC內(nèi)的任一點,連接OA,OB,OC.

(1)如圖1所示,已知∠AOB=150°,∠BOC=120°.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC.
①求∠DAO的度數(shù);
②用一個等式表示線段OA,OB,OC之間的數(shù)量關系,并證明;
(2)設∠AOB=α,∠BOC=β.當α,β滿足什么關系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由.
【考點】幾何變換綜合題.
【答案】(1)①90°;
②OA2+OB2=OC2.理由見解答過程;
(2)當α=β=120°時,OA+OB+OC有最小值.理由見解答過程.
②OA2+OB2=OC2.理由見解答過程;
(2)當α=β=120°時,OA+OB+OC有最小值.理由見解答過程.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/6 4:0:1組卷:106引用:1難度:0.1
相似題
-
1.如圖,在Rt△ACB中,∠ACB=90°,AC=BC.點D是BC延長線上一點,連接AD.將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE.過點E作EF∥BD,交AB于點F.
(1)①直接寫出∠AFE的度數(shù)是 ;
②求證:∠DAC=∠E;
(2)用等式表示線段AF與DC的數(shù)量關系,并證明.發(fā)布:2025/6/11 21:30:2組卷:752引用:2難度:0.3 -
2.綜合與探究
[解決問題]
(1)如圖1,△ABC和△CDE都是等邊三角形(CD>AB),將△CDE繞著點C順時針旋轉(zhuǎn),連接BD、AE.
①如圖2,當點E在BA的延長線上時,∠DBA=°;
②如圖3,當點A恰好在邊CD上時,且點A是CD的中點,∠DBA=°;
③如圖4,當點D在BA的延長線上時,求證:AE∥BC.
[拓展應用]
(2)如圖5,在等邊△ABC中,D是△ABC外一點,連接AD、CD、BD,若∠ADC=30°,AD=3,BD=5,求△BCD的面積.發(fā)布:2025/6/11 20:30:1組卷:145引用:1難度:0.3 -
3.如圖1,在△ACB中,∠ACB=90°,CA=CB,點D,E分別在邊CA,CB上,CD=CE,連接DE,AE,BD,過點C作CF⊥AE,垂足為H,CF與BD交于點F.
(1)求證:DF=BF;
(2)將圖1中的△CDE繞點C逆時針旋轉(zhuǎn),其他條件不變,如圖2,(1)的結論是否成立?如果成立,請證明;如果不成立,請說明理由;
(3)若CD=2,CB=4,將△CDE繞點C逆時針旋轉(zhuǎn)一周,當A,E,D三點共線時,直接寫出CF的長.發(fā)布:2025/6/11 20:30:1組卷:203引用:3難度:0.4