已知橢圓C:x2a2+y2b2=1(a>b>0)上頂點為A,右頂點為B,離心率e=22,O為坐標原點,圓O:x2+y2=23與直線AB相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線l:y=k(x-2)(k≠0)與橢圓C相交于E、F兩不同點,若橢圓C上一點P滿足OP∥l.求△EPF面積的最大值及此時的k2.
x
2
a
2
y
2
b
2
2
2
2
3
【考點】直線與圓錐曲線的綜合;橢圓的標準方程.
【答案】(Ⅰ)橢圓C的標準方程為:;
(Ⅱ)當時,△EPF的面積的最大值為.
x
2
2
+
y
2
=
1
(Ⅱ)當
k
2
=
1
6
2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:120引用:4難度:0.1
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:72引用:5難度:0.7 -
2.已知兩個定點坐標分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:96引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7