如圖1,在菱形ABCD中,AB=5,sin∠ABC=45,E為對(duì)角線AC上一點(diǎn),F(xiàn)在BC上運(yùn)動(dòng),連接FE并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)G,交AD于點(diǎn)H.
(1)求菱形ABCD的面積;
(2)如圖2,若點(diǎn)E是AC的中點(diǎn);
①當(dāng)CF=53時(shí),求AG的長(zhǎng);
②若△AGH的面積為2,求CF的長(zhǎng);
(3)記AEEC=m,是否存在一個(gè)m的值,使得點(diǎn)F在BC上運(yùn)動(dòng)時(shí),2BF+1BG為定值,若存在,請(qǐng)求出這個(gè)定值,并直接寫(xiě)出CF的長(zhǎng)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
?
4
5
5
3
AE
EC
2
BF
+
1
BG
【考點(diǎn)】相似形綜合題.
【答案】(1)20;
(2)①5;②CF的長(zhǎng)為-1;
(3)當(dāng)m=2時(shí),為,0<CF<.
(2)①5;②CF的長(zhǎng)為
6
(3)當(dāng)m=2時(shí),
2
BF
+
1
BG
3
5
5
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:213引用:1難度:0.2
相似題
-
1.如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動(dòng)點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),移動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),DP⊥AC?
②設(shè)S△APQ+S△DCQ=y,寫(xiě)出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動(dòng)到第幾秒到第幾秒之間時(shí),y取得最小值.發(fā)布:2025/7/1 13:0:6組卷:2098引用:6難度:0.1 -
2.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連接CD.過(guò)點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下四個(gè)結(jié)論:①
=AGAB;②若點(diǎn)D是AB的中點(diǎn),則AF=AFFCAB;③當(dāng)B、C、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結(jié)論序號(hào)是( ?。?/h2>12發(fā)布:2025/6/24 16:30:1組卷:2782引用:11難度:0.2 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點(diǎn)F,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),有AE=EF成立;
【數(shù)學(xué)思考】某數(shù)學(xué)興趣小組在探究AE、EF的關(guān)系時(shí),運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,通過(guò)驗(yàn)證得出如下結(jié)論:
當(dāng)點(diǎn)E是直線BC上(B,C除外)任意一點(diǎn)時(shí)(其它條件不變),結(jié)論AE=EF仍然成立.
假如你是該興趣小組中的一員,請(qǐng)你從“點(diǎn)E是線段BC上的任意一點(diǎn)”;“點(diǎn)E是線段BC延長(zhǎng)線上的任意一點(diǎn)”;“點(diǎn)E是線段BC反向延長(zhǎng)線上的任意一點(diǎn)”三種情況中,任選一種情況,在備用圖1中畫(huà)出圖形,并證明AE=EF.
【拓展應(yīng)用】當(dāng)點(diǎn)E在線段BC的延長(zhǎng)線上時(shí),若CE=BC,在備用圖2中畫(huà)出圖形,并運(yùn)用上述結(jié)論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1873引用:6難度:0.1
相關(guān)試卷