已知α∈(-π2,0),sinα=-45,則tan(α+π4)等于( ?。?/h1>
α
∈
(
-
π
2
,
0
)
,
sinα
=
-
4
5
,
則
tan
(
α
+
π
4
)
1 7 | 1 7 |
【考點(diǎn)】兩角和與差的三角函數(shù);同角三角函數(shù)間的基本關(guān)系.
【答案】B
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:40引用:4難度:0.7
相似題
-
1.已知tanα=1,tanβ=2,則tan(α-β)=( ?。?/h2>
A. -13B. 13C.3 D.-3 發(fā)布:2025/1/7 22:30:4組卷:13引用:2難度:0.7 -
2.已知α,β,γ∈
,sinα+sinγ=sinβ,cosβ+cosγ=cosα,則下列說法正確的是( ?。?/h2>(0,π2)A. cos(β-α)=12B. cos(β-α)=-12C. β-α=π3D. β-α=-π3發(fā)布:2024/12/29 9:30:1組卷:96引用:6難度:0.6 -
3.已知α∈(
,π),sinα=π2,則tan(α+35)=( ?。?/h2>π4A. -17B.7 C. 17D.-7 發(fā)布:2024/12/29 12:30:1組卷:352引用:16難度:0.7