如圖,已知∠1=∠2,∠A=∠D.
(1)判斷AB與CD的位置關(guān)系,并說(shuō)明理由;
(2)若∠BFD=40°,求∠MEC的度數(shù).
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】(1)AB∥CD,證明見(jiàn)解析;
(2)40°.
(2)40°.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/9 9:0:9組卷:581引用:4難度:0.8
相似題
-
1.填空并完成以下證明:
如圖,BD⊥AC于點(diǎn)D,EF⊥AC于點(diǎn)F,DM∥BC,∠1=∠2,求證:DM∥GF.
證明:∵BD⊥AC,EF⊥AC(已知)
∴∠BDF=∠EFC=90°( )
∴BD∥EF( )
∴∠1=(兩直線平行,同位角相等)
∵∠1=∠2(已知)
∴∠2=∠HFE( )
∴GF∥(內(nèi)錯(cuò)角相等,兩直線平行)
∵∥BC(已知)
∴DM∥GF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行)發(fā)布:2025/6/9 14:30:1組卷:382引用:1難度:0.6 -
2.已知:如圖,∠A=∠ADE,∠C=∠E.
(1)求證:BE∥CD;
(2)若∠EDC=3∠C,求∠C的度數(shù).發(fā)布:2025/6/9 13:0:1組卷:1662引用:14難度:0.5 -
3.如圖,EF∥AD,∠1=∠2,∠BAC=85°.將求∠AGD的過(guò)程填寫(xiě)完整.
解:∵EF∥AD,
∴∠2=∠3( ).
又∵∠1=∠2,
∴∠1=∠3( ).
∴AB∥DG( ).
∴∠BAC+∠AGD=180°( ).
∵∠BAC=85°,
∴∠AGD=95°.發(fā)布:2025/6/9 14:0:1組卷:4引用:1難度:0.7