如圖1,平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3(a<0)與x軸分別交于點(diǎn)A(-3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C,P為拋物線上一動(dòng)點(diǎn).
(1)寫出拋物線的對(duì)稱軸為直線 x=-1x=-1,拋物線的解析式為 y=-x2-2x+3y=-x2-2x+3;
(2)如圖2,連結(jié)AC,若P在AC上方,作PQ∥y軸交AC于Q,把上述拋物線沿射線PQ的方向向下平移,平移的距離為h(h>0),在平移過程中,該拋物線與直線AC始終有交點(diǎn),求h的最大值;
(3)若P在AC上方,設(shè)直線AP,BP與拋物線的對(duì)稱軸分別相交于點(diǎn)F,E,請(qǐng)?zhí)剿饕訟,F(xiàn),B,G(G是點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn))為頂點(diǎn)的四邊形面積是否隨著P點(diǎn)的運(yùn)動(dòng)而發(fā)生變化,若不變,求出這個(gè)四邊形的面積;若變化,說明理由.
(4)設(shè)M為拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)P,M運(yùn)動(dòng)時(shí),在坐標(biāo)軸上是否存在點(diǎn)N,使四邊形PMCN為矩形?若存在,直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.

【考點(diǎn)】二次函數(shù)綜合題.
【答案】x=-1;y=-x2-2x+3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/28 8:51:19組卷:258引用:5難度:0.3
相似題
-
1.如圖1,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2),點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ⊥x軸,垂足為Q,交直線BC于點(diǎn)D.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若以P、D、O、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)Q的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于直線BC上方的拋物線上時(shí),過點(diǎn)P作PE⊥BC于點(diǎn)E,設(shè)△PDE的面積為S,求當(dāng)S取得最大值時(shí)點(diǎn)P的坐標(biāo),并求S的最大值.發(fā)布:2025/5/24 7:30:1組卷:1042引用:7難度:0.5 -
2.如圖,在平面直角坐標(biāo)系中,拋物線A(-1,0),B(3,0),C(0,-1)三點(diǎn).
(1)求該拋物線的表達(dá)式與頂點(diǎn)坐標(biāo);
(2)點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,要使Q、P、A、B為頂點(diǎn)的四邊形是平行四邊形,求所有滿足條件點(diǎn)P的坐標(biāo).發(fā)布:2025/5/24 7:30:1組卷:290引用:1難度:0.1 -
3.拋物線y=ax2+bx+3經(jīng)過A(-1,0),B(3,0)兩點(diǎn),與y軸正半軸交于點(diǎn)C.
(1)求此拋物線解析式;
(2)如圖①,連接BC,點(diǎn)P為拋物線第一象限上一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式,并求S最大時(shí)P點(diǎn)坐標(biāo);
(3)如圖②,連接AC,在拋物線的對(duì)稱軸上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,請(qǐng)直接寫出符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.發(fā)布:2025/5/24 8:0:1組卷:301引用:3難度:0.1