觀察等式:
11×2=1-12;12×3=12-13;13×4=13-14.
將以上三個(gè)等式兩邊分別相加得:
11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)猜想并寫出:1n(n+1)=1n-1n+11n-1n+1.
(2)計(jì)算:
11×2+12×3+13×4+…+12021×2022.
(3)探究并計(jì)算:
11×4+14×7+17×10+…+12020×2023.
1
1
×
2
1
2
1
2
×
3
1
2
1
3
1
3
×
4
1
3
1
4
1
1
×
2
1
2
×
3
1
3
×
4
1
2
1
2
1
3
1
3
1
4
1
4
3
4
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
1
×
2
1
2
×
3
1
3
×
4
1
2021
×
2022
1
1
×
4
1
4
×
7
1
7
×
10
1
2020
×
2023
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;有理數(shù)的混合運(yùn)算.
【答案】-
1
n
1
n
+
1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/18 21:0:1組卷:310引用:4難度:0.5
相似題
-
1.觀察下列等式:
第1個(gè)等式:;(1-13)÷43=12
第2個(gè)等式:;(1-14)÷98=23
第3個(gè)等式:;(1-15)÷1615=34
第4個(gè)等式:;(1-16)÷2524=45
第5個(gè)等式:;(1-17)÷3635=56
……
按照以上規(guī)律,解決下列問題:
(1)寫出第6個(gè)等式:;
(2)寫出你猜想的第n個(gè)等式 (用含n的等式表示),并證明.發(fā)布:2025/5/25 18:30:1組卷:100引用:3難度:0.7 -
2.德國數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了如圖所示的單位分?jǐn)?shù)三角形(單位分?jǐn)?shù)是分子為1,分母為正整數(shù)的分?jǐn)?shù)),又稱為萊布尼茨三角形,根據(jù)前5行的規(guī)律,寫出第6行的第三個(gè)數(shù):.
發(fā)布:2025/5/25 21:30:1組卷:83引用:3難度:0.7 -
3.設(shè)
(n為正整數(shù)),若f(1)=n2,則( ?。?/h2>f(x)=a1x+a2x2+…+anxn發(fā)布:2025/5/25 19:30:2組卷:186引用:1難度:0.3