【綜合與實(shí)踐】數(shù)學(xué)綜合實(shí)踐課上,同學(xué)們以“等腰三角形的旋轉(zhuǎn)”為主題,開展如下探究活動(dòng):
(1)【操作探究】如圖1,△ABC為等邊三角形,將△ABC繞點(diǎn)A旋轉(zhuǎn)180°,得到△ADE,連接BE,則∠EBC=9090°.若F是BE的中點(diǎn),連接AF,則AF與DE的數(shù)量關(guān)系是 AF=12DEAF=12DE.
(2)【遷移探究】如圖2,將(1)中的△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到△ADE,其他條件不變,求出此時(shí)∠EBC的度數(shù)及AF與DE的數(shù)量關(guān)系.
(3)【拓展應(yīng)用】如圖3,在Rt△ABC中,AB=AC=2,∠BAC=90°,將△ABC繞點(diǎn)A旋轉(zhuǎn),得到△ADE,連接BE,F(xiàn)是BE的中點(diǎn),連接AF.在旋轉(zhuǎn)過程中,當(dāng)∠EBC=15°時(shí),直接寫出線段AF的長.
1
2
1
2
【考點(diǎn)】幾何變換綜合題.
【答案】90;AF=DE
1
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:498引用:9難度:0.2
相似題
-
1.如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補(bǔ)全;
②在點(diǎn)D運(yùn)動(dòng)的過程中,DA和AM有什么數(shù)量關(guān)系并證明.發(fā)布:2024/12/23 14:0:1組卷:256引用:2難度:0.2 -
2.如圖,點(diǎn)M為矩形ABCD的邊BC上一點(diǎn),將矩形ABCD沿AM折疊,使點(diǎn)B落在邊CD上的點(diǎn)E處,EB交AM于點(diǎn)F,在EA上取點(diǎn)G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:408引用:2難度:0.1 -
3.閱讀下列材料,完成相應(yīng)任務(wù).
【探究三角形中邊與角之間的不等關(guān)系】
學(xué)習(xí)了等腰三角形,我們知道在一個(gè)三角形中,等邊所對(duì)的角相等;反過來,等角所對(duì)的邊也相等,那么,不相等的邊所對(duì)的角之間的大小關(guān)系怎樣呢?大邊所對(duì)的角也大嗎?下面是奮進(jìn)小組的證明過程.
如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
證明:如圖2,將△ABC折疊,使邊AC落在AB上,點(diǎn)C落在AB上的點(diǎn)C'處,折痕AD交BC于點(diǎn)D.則∠AC'D=∠C.
∵∠AC'D=+∠BDC'(三角形外角的性質(zhì))
∴∠AC'D>∠B
∴∠C>∠B(等量代換)
類似地,應(yīng)用這種方法可以證明“在一個(gè)三角形中,大角對(duì)大邊,小角對(duì)小邊”的問題.
任務(wù)一:將上述證明空白部分補(bǔ)充完整;
任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問題,再用三角形外角的性質(zhì)或三邊關(guān)系進(jìn)而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是 ;(填正確選項(xiàng)的代碼:單選)
A.轉(zhuǎn)化思想
B.方程思想
C.?dāng)?shù)形結(jié)合思想
任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說法,正確的有 (將正確的代碼填在橫線處:多選).
①在△ABC中,AB>BC,則∠A>∠B;
②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
③Rt△ABC中,∠B=90°,則最長邊是AC;
④在△ABC中,∠A=55°,∠B=70°,則AB=BC.發(fā)布:2024/11/22 8:0:1組卷:185引用:2難度:0.4
把好題分享給你的好友吧~~