綜合與實(shí)踐
小明遇到這樣一個(gè)問題,如圖1,△ABC中,AB=7,AC=5,點(diǎn)D為BC的中點(diǎn),求AD的取值范圍.
小明發(fā)現(xiàn)老師講過的“倍長(zhǎng)中線法”可以解決這個(gè)問題,所謂倍長(zhǎng)中線法,就是將三角形的中線延長(zhǎng)一倍,以便構(gòu)造出全等三角形,從而運(yùn)用全等三角形的有關(guān)知識(shí)來解決問題的方法,他的做法是:如圖2,延長(zhǎng)AD到E,使DE=AD,連接BE,構(gòu)造△BED≌△CAD,經(jīng)過推理和計(jì)算使問題得到解決.
請(qǐng)回答:
(1)小明證明△BED≌△CAD用到的判定定理是:AA;(填入你選擇的選項(xiàng)字母)
A.SAS
B.SSS
C.AAS
D.ASA
(2)AD的取值范圍是 1<AD<61<AD<6.
小明還發(fā)現(xiàn):倍長(zhǎng)中線法最重要的一點(diǎn)就是延長(zhǎng)中線一倍,完成全等三角形模型的構(gòu)造.
參考小明思考問題的方法,解決問題:
如圖3,在正方形ABCD中,E為AB邊的中點(diǎn),G、F分別為AD,BC邊上的點(diǎn),若AG=2,BF=4,∠GEF=90°,求GF的長(zhǎng).
【答案】A;1<AD<6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:785引用:3難度:0.5
相似題
-
1.如圖,在△ABC中,∠BAC=90°,延長(zhǎng)BA到點(diǎn)D,使AD=
AB,點(diǎn)E、F分別為BC、AC的中點(diǎn),請(qǐng)你在圖中找出一組相等關(guān)系,使其滿足上述所有條件,并加以證明.12發(fā)布:2025/1/24 8:0:2組卷:4引用:1難度:0.5 -
2.如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在線段BC上,且AE=CF.
求證:∠AEB=∠CFB.發(fā)布:2025/1/24 8:0:2組卷:453引用:4難度:0.7 -
3.如圖,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,則∠B=.
發(fā)布:2025/1/28 8:0:2組卷:10引用:0難度:0.7
相關(guān)試卷