如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2cm的速度運(yùn)動到C點(diǎn)返回,動點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動,點(diǎn)P,Q分別從點(diǎn)B,A同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動,設(shè)運(yùn)動的時(shí)間t(秒).
(1)求DQ、PC的代數(shù)表達(dá)式;
(2)當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形;
(3)當(dāng)0<t<10.5時(shí),是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請直接寫出所有滿足要求的t的值;若不存在,請說明理由.
【考點(diǎn)】四邊形綜合題.
【答案】(1)DQ=16-t,PC=21-2t或PC=2t-21;
(2)當(dāng)t=5或秒時(shí),四邊形PQDC是平行四邊形;
(3)存在這樣的P,使△PQD是等腰三角形,當(dāng)秒或秒時(shí),△PQD是等腰三角形.
(2)當(dāng)t=5或
37
3
(3)存在這樣的P,使△PQD是等腰三角形,當(dāng)
t
=
16
3
7
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/7 16:30:2組卷:243引用:5難度:0.2
相似題
-
1.如圖1,數(shù)軸上A,C兩點(diǎn)表示的數(shù)分別是a,c,BD∥AC,設(shè)BD=b,且(a-2)2+|b-1|=0,b+c<0.
(1)求a,b的值;
(2)E為線段AC上的動點(diǎn),連接BE,∠ABE和∠DBE的平分線分別交直線AC于點(diǎn)F,G,∠DBG和∠BAC的平分線交于點(diǎn)H,且∠BAC=60°,∠DBF=k∠BHA.
①求k的值;
②如圖2,DO⊥AC,垂足為O,將四邊形ABDC沿射線DO方向平移h(h>0)個單位得到四邊形A'B'D'C',其中A'B',D'C'分別交數(shù)軸于點(diǎn)M,N,若AN+CM=,且圖中陰影部分面積為32k,則h的值是 (直接寫出答案,無需證明).34-32c發(fā)布:2025/6/8 1:0:1組卷:23引用:2難度:0.1 -
2.如圖①,已知四邊形ABCD是矩形,點(diǎn)E在BA的延長線上,AE=AD.EC與BD相交于點(diǎn)G,與AD相交于點(diǎn)F,且AF=AB.
(1)求證:△EAF≌△DAB;
(2)若AB=1,求AE的長;
(3)如圖②,連接AG,求證:EG-DG=AG.2發(fā)布:2025/6/8 1:30:1組卷:91引用:2難度:0.1 -
3.如圖,四邊形ABCD是正方形,點(diǎn)O為對角線AC的中點(diǎn).
(1)問題解決:如圖①,連接BO,分別取CB,BO的中點(diǎn)P,Q,連接PQ,則PQ與BO的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)問題探究:如圖②,△AO'E是將圖①中的△AOB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)45°得到的三角形,連接CE,點(diǎn)P,Q分別為CE,BO'的中點(diǎn),連接PQ,PB.判斷△PQB的形狀,并證明你的結(jié)論;
(3)拓展延伸:如圖③,△AO'E是將圖①中的△AOB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)45°得到的三角形,連接BO',點(diǎn)P,Q分別為CE,BO'的中點(diǎn),連接PQ,PB.若正方形ABCD的邊長為1,求△PQB的面積.發(fā)布:2025/6/8 0:0:1組卷:2547引用:16難度:0.2