試卷征集
加入會員
操作視頻

閱讀下列材料:教科書中這樣寫道:“我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.即將多項式x2+bx+c(b、c為常數(shù))寫成(x+h)2+k(h、k為常數(shù))的形式,配方法是一種重要的解決數(shù)學(xué)問題的方法,不僅可以將有些看似不能分解的多項式分解因式,還能解決一些與非負數(shù)有關(guān)的問題及求代數(shù)式最大、最小值等問題.
【知識理解】
(1)若多項式x2+kx+16是一個完全平方式,那么常數(shù)k的值為
±8
±8

(2)配方:x2-6x-10=(x-3)2-
19
19
;
【知識運用】
(3)已知m2+2mn+2n2-8n+16=0,則m=
-4
-4
,n=
4
4
;
(4)求多項式:x2+y2-4x+6y+15的最小值.

【答案】±8;19;-4;4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:856引用:5難度:0.5
相似題
  • 1.一個各位數(shù)字都不為0的四位正整數(shù)m,若千位與個位數(shù)字相同,百位與十位數(shù)字相同,則稱這個數(shù)m為“雙雙胞蛋數(shù)”,將千位與百位數(shù)字交換,十位與個位數(shù)字交換,得到一個新的“雙胞蛋數(shù)”m′,并規(guī)定
    F
    m
    =
    m
    -
    m
    11
    .若已知數(shù)m為“雙胞蛋數(shù)”,設(shè)m的千位數(shù)字為a,百位數(shù)字為b,且a≠b,若
    F
    m
    54
    是一個完全平方數(shù),則a-b=
    ,滿足條件的m的最小值為

    發(fā)布:2025/5/23 5:0:2組卷:389引用:2難度:0.7
  • 2.已知xy=1,3y-x=3,則3xy2-x2y-xy的值為

    發(fā)布:2025/5/22 22:30:1組卷:391引用:2難度:0.7
  • 3.已知非負數(shù)a,b,c(均不為0),滿足bc=
    1
    2
    (a2-b2-c2),則下列結(jié)論一定正確的是( ?。?/h2>

    發(fā)布:2025/5/23 7:30:1組卷:681引用:4難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正