【問題探究】如圖1,在正方形ABCD中,點(diǎn)E、F分別在邊DC、BC上,且AE⊥DF,求證:AE=DF.
【知識遷移】如圖2,在矩形ABCD中,AB=3,BC=4,點(diǎn)E在邊AD上,點(diǎn)M、N分別在邊AB、CD上,且BE⊥MN,求BEMN的值.
【拓展應(yīng)用】如圖3,在平行四邊形ABCD中,AB=m,BC=n,點(diǎn)E、F分別在邊AD、BC上,點(diǎn)M、N分別在邊AB、CD上,當(dāng)∠EFC與∠MNC的度數(shù)之間滿足什么數(shù)量關(guān)系時,有EFMN=mn?試寫出其數(shù)量關(guān)系,并說明理由.

BE
MN
EF
MN
=
m
n
?
【考點(diǎn)】相似形綜合題.
【答案】【問題探究】見解析;
【知識遷移】;
【拓展應(yīng)用】當(dāng)∠EFC=∠MNC時,或當(dāng)∠EFC+∠MNC=180°時,.
【知識遷移】
3
4
【拓展應(yīng)用】當(dāng)∠EFC=∠MNC時,或當(dāng)∠EFC+∠MNC=180°時,
EF
MN
=
m
n
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/23 12:30:2組卷:746引用:1難度:0.4
相似題
-
1.已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
問題發(fā)現(xiàn):
(1)①如圖1,若四邊形ABCD是正方形,且DE⊥CF于G,則=;DECF
②如圖2,當(dāng)四邊形ABCD是矩形時,且DE⊥CF于G,AB=m,AD=n,則=;DECF
拓展研究:
(2)如圖3,若四邊形ABCD是平行四邊形,且∠B+∠EGC=180°時,求證:;DECF=ADCD
解決問題:
(3)如圖4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,請直接寫出的值.DECF發(fā)布:2025/5/23 23:30:1組卷:2292引用:6難度:0.3 -
2.[問題情境]
(1)王老師給愛好學(xué)習(xí)的小明和小穎提出這樣一個問題:如圖①,在△ABC中,AB=AC,P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小明的證明思路是:
如圖②,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小穎的證明思路是:
如圖②,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
請你選擇小明、小穎兩種證明思路中的任意一種,寫出詳細(xì)的證明過程.
[變式探究](2)如圖③,當(dāng)點(diǎn)P在BC延長線上時,問題情境中,其余條件不變,求證:PD-PE=CF.
[結(jié)論運(yùn)用](3)如圖④,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C'處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE,PH⊥BG,垂足分別為G,H,若AD=8,CF=3,求PG+PH的值.
[遷移拓展](4)圖⑤是一個機(jī)器模型的截面示意圖,在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D,C,且AD?CE=DE?BC,AB=2cm,AD=3cm,BD=13cm,MN分別為AE,BE的中點(diǎn),連接DM,CN,請直接寫出△DEM與△CEN的周長之和.37發(fā)布:2025/5/24 0:30:1組卷:278引用:1難度:0.1 -
3.在矩形ABCD中,AB=2,AD=4,F(xiàn)是對角線AC上不與點(diǎn)A,C重合的一點(diǎn),過F作FE⊥AD于E,將△AEF沿EF翻折得到△GEF,點(diǎn)G在射線AD上,連接CG.
(1)如圖1,若點(diǎn)A的對稱點(diǎn)G落在AD上,∠FGC=90°,延長GF交AB于H,連接CH.
①求證:△CDG∽△GAH;
②求tan∠GHC.
(2)如圖2,若點(diǎn)A的對稱點(diǎn)G落在AD延長線上,∠GCF=90°,判斷△GCF與△AEF是否全等,并說明理由.發(fā)布:2025/5/23 23:0:1組卷:1132引用:5難度:0.3