將正方形ABCD放置在平面直角坐標系中,B與原點重合,點A的坐標為(0,a),點E的坐標為(b,0),并且實數(shù)a,b使式子b=12-2a+a-6+3成立.
(1)直接寫出點D、E的坐標:D(6,6)(6,6),E(3,0)(3,0).
(2)∠AEF=90°,且EF交正方形外角的平分線CF于點F.
①如圖①,求證AE=EF;
②如圖②,連接AF交DC于點G,作GM∥AD交AE于點M,作EN∥AB交AF于點N,連接MN,求四邊形MNGE的面積.
(3)如圖③,連接正方形ABCD的對角線AC,若點P在AC上,點Q在CD上,且AP=CQ,請直接寫出(BP+BQ)2的最小值72+36272+362.

12
-
2
a
a
-
6
2
2
【考點】四邊形綜合題.
【答案】(6,6);(3,0);72+36
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:870引用:3難度:0.3
相似題
-
1.如圖直角坐標系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點,已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個動點,P從O出發(fā)以每秒3個單位長度的速度向終點B運動,Q從B出發(fā)以每秒8個單位長度的速度向終點A運動,兩點同時出發(fā),當其中一點到達終點時整個運動結束,設運動時間為t(秒).
(1)求線段AB的長,及點A的坐標;
(2)t為何值時,△BPQ的面積為2;3
(3)若C為OA的中點,連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
①t為何值時,點D恰好落在坐標軸上;
②是否存在時間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫出t的值.發(fā)布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3 -
2.如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1.
(1)如圖(1),過點C作CH⊥AB于H,求證:DD1+FF1=AB;
(2)如圖(2),連接EG,問△ABC的面積與△ECG的面積是否相等?請說明理由;
(3)如圖(3),過點C作CM⊥EG于M,延長MC交AB于點N,求證:AN=BN.發(fā)布:2025/6/21 3:30:1組卷:127引用:3難度:0.5 -
3.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿CB方向向點B以3cm/s的速度運動.P、Q兩點同時出發(fā),設運動時間為t,當其中一點到達端點時,另一點隨之停止運動.
(1)當t=3時,PD=,CQ=.
(2)當t為何值時,四邊形CDPQ是平行四邊形?請說明理由.
(3)在運動過程中,設四邊形CDPQ的面積為S,寫出S與t的函數(shù)關系式,并求當t為何值時,S的值最大,最大值是多少?發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3