如圖①,在△ABC中,∠C=90°,AC=15,BC=20,經(jīng)過點(diǎn)C的⊙O與△ABC的每條邊都相交.⊙O與AC邊的另一個(gè)公共點(diǎn)為D,與BC邊的另一個(gè)公共點(diǎn)為E,與AB邊的兩個(gè)公共點(diǎn)分別為F、G.設(shè)⊙O的半徑為r.
【操作感知】
(1)根據(jù)題意,僅用圓規(guī)在圖①中作出一個(gè)滿足條件的⊙O,并標(biāo)明相關(guān)字母;
【初步探究】
(2)求證:CD2+CE2=4r2;
(3)當(dāng)r=8時(shí),則CD2+CE2+FG2的最大值為 448448;
【深入研究】
(4)直接寫出滿足題意的r的取值范圍;對于范圍內(nèi)每一個(gè)確定的r的值,CD2+CE2+FG2都有最大值,每一個(gè)最大值對應(yīng)的圓心O所形成的路徑長為 314314.

31
4
31
4
【考點(diǎn)】圓的綜合題.
【答案】448;
31
4
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1048引用:3難度:0.1
相似題
-
1.如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為劣弧AC上的一動點(diǎn),延長CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長;
(2)求CP?CE的值;
(3)如圖2,過點(diǎn)O作OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動時(shí),連接AC,PC.試問△APC與△OHD相似嗎?說明理由;的值是否保持不變?若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.APDH發(fā)布:2025/6/24 18:30:1組卷:272引用:1難度:0.5 -
2.下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.畫法:
(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;
(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.則直線AD就是過點(diǎn)A的圓的切線.
請回答:①這種畫法是否正確 (是或否);
②你判斷的依據(jù)是:.發(fā)布:2025/6/25 8:0:1組卷:19引用:1難度:0.4 -
3.如圖,已知⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)是(1,-1),半徑為
.5
(1)比較線段AB與CD的大??;
(2)求A、B、C、D四點(diǎn)的坐標(biāo);
(3)過點(diǎn)D作⊙O′的切線,試求這條切線的解析式.發(fā)布:2025/6/24 20:0:2組卷:43引用:1難度:0.5
相關(guān)試卷