已知二次函數(shù)f(x)=x2-x-6在區(qū)間[1,4]上的圖象是一條連續(xù)的曲線,且f(1)=-6<0,f(4)=6>0,由零點(diǎn)存在性定理可知函數(shù)在[1,4]內(nèi)有零點(diǎn),用二分法求解時(shí),?。?,4)的中點(diǎn)a,則f(a)=-2.25-2.25.
【考點(diǎn)】二分法的定義與應(yīng)用.
【答案】-2.25
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:59引用:3難度:0.7
相似題
-
1.已知函數(shù)f(x)=
,在下列區(qū)間中,包含f(x)的零點(diǎn)的區(qū)間是( ?。?/h2>6x-log2x發(fā)布:2024/11/10 2:30:1組卷:1102引用:27難度:0.7 -
2.牛頓迭代法是我們求方程近似解的重要方法.對(duì)于非線性可導(dǎo)函數(shù)f(x)在x0附近一點(diǎn)的函數(shù)值可用f(x)≈f(x0)+f'(x0)(x-x0)代替,該函數(shù)零點(diǎn)更逼近方程的解,以此法連續(xù)迭代,可快速求得合適精度的方程近似解.利用這個(gè)方法,解方程x3-3x+1=0,選取初始值x0=
,在下面四個(gè)選項(xiàng)中最佳近似解為( ?。?/h2>12發(fā)布:2024/10/27 14:30:2組卷:123引用:3難度:0.6 -
3.若f(x)=x3+x2-2x-2的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,數(shù)據(jù)如表:那么方程x3+x2-2x-2=0的一個(gè)近似根(精確到0.1)為( ?。?br />
f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165 f(1.406 5)=-0.052 發(fā)布:2024/12/28 6:30:3組卷:53引用:1難度:0.7