在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+b與x軸負半軸相交于點A,與x軸正半軸相交于點B,與y軸正半軸相交于點C,AO=OC=6.
(1)求a,b的值;
(2)如圖1,點P為第一象限拋物線上一點,設(shè)點P的橫坐標為t,連接PO、PB,設(shè)△POB的面積為S,求S與t的函數(shù)關(guān)系式.(不要求寫出自變量t的取值范圍);
(3)如圖2,在(2)的條件下,連接CP,過點P作PD⊥CP交y軸于點D,過點D作y軸的垂線交第二象限內(nèi)的拋物線于點Q,連接PQ,點F在y軸上,且在點C上方,點G為y軸負半軸上一點,且CF=OG,連接AF、BG,點H在AF上,過點F作FM⊥y軸交OH延長線于點M,OH=MH,點N為OC上一點,連接NH,∠BGO+∠HNO=180°,連接AN,若AN∥PQ,求點Q的坐標.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:152引用:1難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3639引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2664引用:7難度:0.7
相關(guān)試卷