以直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系,且在兩種坐標系中取相同的長度單位.曲線C的極坐標方程是ρ2=161+3cos2θ.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設曲線C與x軸正半軸及y軸正半軸交于點M,N,在第一象限內曲線C上任取一點P,求四邊形OMPN面積的最大值.
16
1
+
3
co
s
2
θ
【考點】參數方程化成普通方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/13 0:0:8組卷:155引用:4難度:0.5
相似題
-
1.直線l的極坐標方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數方程為
(t為參數),圓C2的普通方程為x2+y2+2x=costy=1+sintx=0.3
(1)求C1,C2的極坐標方程;
(2)若l與C1交于點A,l與C2交于點B,當|AB|=2時,求△ABC2的面積.發(fā)布:2024/10/20 2:0:1組卷:12難度:0.5 -
2.已知曲線的參數方程
(θ為參數),當參數x=2sinθy=cos2θ時,對應的點的坐標是( )θ=π6發(fā)布:2024/11/29 5:0:2組卷:7引用:1難度:0.7 -
3.將參數方程
(但為參數)化為普通方程為( )x=2+sinθy=sinθ發(fā)布:2024/11/29 5:0:2組卷:9引用:1難度:0.7
把好題分享給你的好友吧~~