同一平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.如圖,已知EM∥BN,點(diǎn)A在EM、BN內(nèi)部,我們過點(diǎn)A作EM或BN的平行線AP,則有AP∥EM∥BN,故∠E=∠EAP,∠B=∠BAP,故∠EAB=∠EAP+∠BAP,即∠EAB=∠E+∠B.
(1)現(xiàn)將點(diǎn)A移至如圖2的位置,以上結(jié)論是否仍然成立?若成立,說明理由;若不成立,則∠E、∠A、∠B之間有何數(shù)量關(guān)系?請證明你的結(jié)論.
(2)如圖3,∠AEM與∠ABN的角平分線相交于點(diǎn)F;
①若∠A=120°,∠AEM=140°,則∠EFD=60°60°.
②試探究∠EFD與∠A的數(shù)量關(guān)系,并說明你的理由.
(3)如圖4,∠AEM與∠ABN的角平分線相交于點(diǎn)F,過點(diǎn)F作FG⊥EF交BN于點(diǎn)G,若∠A=∠BFG,則∠EFB=30°30°.
【考點(diǎn)】幾何變換綜合題.
【答案】60°;30°
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:116引用:2難度:0.6
相似題
-
1.已知正方形ABCD和△ABE(點(diǎn)C,D,E在直線AB同側(cè)),把△ABE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得到△ADF,由旋轉(zhuǎn)的性質(zhì),可知△ADF≌△ABE,延長BE交DF于點(diǎn)G.
(1)如圖1,若點(diǎn)E在正方形ABCD邊AD上(∠BAE=90°),則BE與DF的位置關(guān)系是 .
(2)如圖2,若點(diǎn)E在正方形ABCD內(nèi)部(∠BAE<90°,∠BEA<90°).
①(1)的結(jié)論還成立嗎?若成立,請證明你的結(jié)論;若不成立,請說明理由.
②若BG=6,DG=2,請直接寫出線段AG的長.
?發(fā)布:2024/11/4 8:0:2組卷:64引用:1難度:0.5 -
2.閱讀下列材料,完成相應(yīng)任務(wù).
【探究三角形中邊與角之間的不等關(guān)系】
學(xué)習(xí)了等腰三角形,我們知道在一個(gè)三角形中,等邊所對的角相等;反過來,等角所對的邊也相等,那么,不相等的邊所對的角之間的大小關(guān)系怎樣呢?大邊所對的角也大嗎?下面是奮進(jìn)小組的證明過程.
如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
證明:如圖2,將△ABC折疊,使邊AC落在AB上,點(diǎn)C落在AB上的點(diǎn)C'處,折痕AD交BC于點(diǎn)D.則∠AC'D=∠C.
∵∠AC'D=+∠BDC'(三角形外角的性質(zhì))
∴∠AC'D>∠B
∴∠C>∠B(等量代換)
類似地,應(yīng)用這種方法可以證明“在一個(gè)三角形中,大角對大邊,小角對小邊”的問題.
任務(wù)一:將上述證明空白部分補(bǔ)充完整;
任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問題,再用三角形外角的性質(zhì)或三邊關(guān)系進(jìn)而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是 ;(填正確選項(xiàng)的代碼:單選)
A.轉(zhuǎn)化思想
B.方程思想
C.?dāng)?shù)形結(jié)合思想
任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說法,正確的有 (將正確的代碼填在橫線處:多選).
①在△ABC中,AB>BC,則∠A>∠B;
②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
③Rt△ABC中,∠B=90°,則最長邊是AC;
④在△ABC中,∠A=55°,∠B=70°,則AB=BC.發(fā)布:2024/11/22 8:0:1組卷:182引用:2難度:0.4 -
3.(1)如圖1,等邊△ABC中,BC=6,點(diǎn)P是BC上一動點(diǎn),點(diǎn)P關(guān)于直線AB、AC的對稱點(diǎn)分別為點(diǎn)M、N,連接MN.
①當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),線段MN的長是;當(dāng)AP的長最小時(shí),線段MN的長是;
②如圖2,連接PM、PN,分別交AB、AC于點(diǎn)D、E.當(dāng)PB為多少時(shí),線段MN的長是2?21
(2)如圖3,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,點(diǎn)P、Q、R分別為邊BC、AB、AC上(均不與端點(diǎn)重合)的動點(diǎn),求△PQR周長的最小值并簡要說明理由.3發(fā)布:2024/11/21 8:0:2組卷:296引用:1難度:0.1
把好題分享給你的好友吧~~