如圖1,拋物線y=ax2-2x-3與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C.直線l:y=x+m經(jīng)過A、C兩點(diǎn).
(1)求直線l和拋物線的解析式;
(2)如圖2,將位于x軸下方的拋物線沿x軸向上翻折形成“W”圖象,將直線l向上平移n個(gè)單位得到直線b.當(dāng)直線b與“W”圖象有兩個(gè)交點(diǎn)時(shí),求n的取值范圍.
【考點(diǎn)】拋物線與x軸的交點(diǎn);二次函數(shù)圖象與幾何變換;待定系數(shù)法求二次函數(shù)解析式;二次函數(shù)的性質(zhì);二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)圖象與幾何變換;一次函數(shù)的性質(zhì).
【答案】(1)l:y=x-3;y=x2-2x-3;
(2)或0<n<4.
(2)
n
>
25
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:125引用:2難度:0.4
相似題
-
1.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)C的坐標(biāo)為(0,-3).
(1)求拋物線的解析式;
(2)如圖1,E為△ABC邊AB上的一動(dòng)點(diǎn),F(xiàn)為BC邊上的一動(dòng)點(diǎn),D點(diǎn)坐標(biāo)為(0,-2),求△DEF周長(zhǎng)的最小值.發(fā)布:2025/5/22 22:30:1組卷:469引用:3難度:0.5 -
2.若方程ax2+bx+c=0的兩個(gè)根是-3和1,那么二次函數(shù)y=ax2+bx+c的圖象的對(duì)稱軸是直線( ?。?/h2>
發(fā)布:2025/5/22 23:0:1組卷:2150引用:28難度:0.9 -
3.將拋物線
先向右平移y=13x2個(gè)單位長(zhǎng)度,再向下平移9個(gè)單位長(zhǎng)度,平移后的拋物線與x軸交于A、B兩點(diǎn),頂點(diǎn)是C點(diǎn),連接AC、BC,則cos∠CAB的值為( ?。?/h2>3發(fā)布:2025/5/22 23:0:1組卷:198引用:1難度:0.5
相關(guān)試卷