一次數(shù)學(xué)課上,老師在黑板上畫了如圖圖形,并寫下了四個等式:
①BD=CA,②AB=DC,③∠B=∠C,④∠BAE=∠CDE.
要求同學(xué)從這四個等式中選出兩個作為條件,推出AE=DE.請你試著完成老師提出的要求,并說明理由.(寫出一種即可)
已知:①②①②(請?zhí)顚懶蛱枺笞C:AE=DE.
證明:.
【考點】全等三角形的判定與性質(zhì).
【答案】①②;
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:138引用:12難度:0.5
相似題
-
1.在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( ?。?/h2>
發(fā)布:2025/6/25 5:30:3組卷:3235引用:5難度:0.3 -
2.復(fù)習(xí)“全等三角形”的知識時,老師布置了一道作業(yè)題:“如圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點,將AP繞A順時針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個愛動腦筋的同學(xué),他通過對圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請你幫小亮完成證明.
(2)之后,小亮又將點P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請你就圖②給出證明.若不成立,請說明理由.發(fā)布:2025/6/25 8:0:1組卷:215引用:5難度:0.5 -
3.已知:如圖,在Rt△ABC中,∠C=90°,∠A=30°,分別以AB、AC為邊在△ABC的外側(cè)作等邊△ABE和等邊△ACD,DE與AB交于F,
求證:EF=FD.發(fā)布:2025/6/25 8:0:1組卷:297引用:2難度:0.5