試卷征集
加入會員
操作視頻

【學習概念】有一組對角互余的凸四邊形稱為對余四邊形,連接這兩個角的頂點的線段稱為對余線.
【理解運用】(1)如圖1,對余四邊形中,AB=5,BC=6,CD=4,連接AC,若AC=AB,則cos∠ABC=
3
5
3
5
,sin∠CAD=
12
25
12
25


(2)如圖2,凸四邊形中,AD=BD,AD⊥BD,當2CD2+CB2=CA2時,判斷四邊形ABCD是否為對余四邊形,證明你的結論.
【拓展提升】(3)在平面直角坐標系中,A(-1,0),B(3,0),C(1,2),四邊形ABCD是對余四邊形,點E在對余線BD上,且位于△ABC內部,∠AEC=90°+∠ABC.設
AE
BE
=u,點D的縱坐標為t,請在下方橫線上直接寫出u與t的函數(shù)表達,并注明t的取值范圍
u=
t
2
(0<t<4)
u=
2
(0<t<4)

【考點】四邊形綜合題
【答案】
3
5
;
12
25
;u=
t
2
(0<t<4)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:883引用:3難度:0.3
相似題
  • 1.如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,BE=CF,AE,BF交于點G.
    (1)求∠AGF的度數(shù);
    (2)在線段AG上截取MG=BG,連接DM,∠AGF的角平分線交DM于點N.
    ①依題意補全圖形;
    ②用等式表示線段MN與ND的數(shù)量關系,并證明.

    發(fā)布:2025/5/22 14:0:1組卷:1952引用:3難度:0.3
  • 2.(1)問題提出
    如圖1,在直角△ABC中,∠ACB=90°,AC=6,BC=8,D為邊AB上的一個動點,連接CD,則CD的最小長度為

    (2)問題探究
    如圖2,在矩形ABCD中,四邊形EFGH為矩形的內接四邊形,點E,F(xiàn),G,H分別在AD,AB,BC,CD上.FH為對角線,且滿足FH∥AD,若AD=6,AB=4,則四邊形EFGH的面積是否為定值?若是,求出該定值;若不是,請說明理由.
    (3)問題解決
    如圖3,某果蔬基地規(guī)劃修建一片試驗區(qū),并將試驗區(qū)劃分為四個區(qū)域.按照設計圖的思路,試驗區(qū)的平面示意圖為四邊形ABCD,∠ADC=90°,點O在四邊形ABCD的對角線AC上,且滿足OD=50m,CD=110m,OB∥AD,∠OBC=30°,設BO=x m,
    S
    ABC
    =
    y
    m
    2

    ①請寫出y關于x的函數(shù)關系式;
    ②由于果蔬基地占地有限,探究y是否存在最小值.若存在,求出y值;若不存在,請說明理由.

    發(fā)布:2025/5/22 14:0:1組卷:268引用:2難度:0.1
  • 3.問題提出
    (1)如圖1,在△ABC中,點D在BC上,連接AD,CD=2BD,則△ABD與△ACD的面積之比為

    問題探究
    (2)如圖2,在矩形ABCD中,AB=4,BC=8,點P為矩形內一動點,在點P運動的過程中始終有∠APB=45°,求△APB面積的最大值;(結果保留根號)
    問題解決
    (3)如圖3,某市欲規(guī)劃一塊形如平行四邊形ABCD的休閑旅游觀光區(qū),點A為觀光區(qū)的入口,并滿足∠BAD=120°,要求在邊BC上確定一點E為觀光區(qū)的南門,為了方便市民游覽,修建一條觀光通道AE(觀光通道的寬度不計),且BE=2CE,AE=300米,為了容納盡可能多的游客,要求平行四邊形ABCD的面積最大,請問是否存在滿足上述條件的面積最大的平行四邊形ABCD?若存在,求出平行四邊形ABCD的最大面積;若不存在,請說明理由.(結果保留根號)

    發(fā)布:2025/5/22 14:0:1組卷:735引用:4難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正