如圖,在Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D為AC的中點(diǎn).點(diǎn)P從點(diǎn)A出發(fā),沿AB方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).過(guò)點(diǎn)C作CE∥AB,交PD的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),請(qǐng)解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),△ADP是直角三角形?
(2)連接AF,QD,設(shè)四邊形AFQD的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),四邊形AFQD的面積與△ABF的面積相等?
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使BD平分∠CDP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
【考點(diǎn)】四邊形綜合題.
【答案】(1)當(dāng)t=4時(shí),△ADP是直角三角形;
(2)S=-t2+12(0<t<6);
(3)當(dāng)t=3-3時(shí),四邊形AFQD的面積與△ABF的面積相等;
(4)當(dāng)t=時(shí),BD平分∠CDP.
(2)S=-
1
3
(3)當(dāng)t=3
5
(4)當(dāng)t=
112
39
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:291引用:1難度:0.2
相似題
-
1.如圖,四邊形ABCD是正方形,E是線段BC上一點(diǎn),連接AE,將AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°,得到EF,過(guò)點(diǎn)F作FG⊥CD于點(diǎn)G.
(1)如圖①,當(dāng)E是BC的中點(diǎn)時(shí),請(qǐng)直接寫出線段FG和BE的數(shù)量關(guān)系;
(2)如圖②,當(dāng)E不是BC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由;
(3)若BC=4,CE=2,EF與CD交于點(diǎn)P,請(qǐng)求出CP的長(zhǎng).發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1 -
2.如圖1,正方形ABCD,E為平面內(nèi)一點(diǎn),且∠BEC=90°,把△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得△BAG,直線AG和直線CE交于點(diǎn)F.
(1)證明:四邊形BEFG是正方形;
(2)若∠AGD=135°,猜測(cè)CE和CF的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖2,連接DF,若AB=13,CF=17,求DF的長(zhǎng).發(fā)布:2025/6/20 10:30:1組卷:97引用:1難度:0.1 -
3.已知:在?ABCD中,∠BAD=45°,AB=BD,E為BC上一點(diǎn),連接AE交BD于F,過(guò)點(diǎn)D作DG⊥AE于G,延長(zhǎng)DG交BC于H
(1)如圖1,若點(diǎn)E與點(diǎn)C重合,且AF=,求AD的長(zhǎng);5
(2)如圖2,連接FH,求證:∠AFB=∠HFB;
(3)如圖3,連接AH交BF于M,當(dāng)M為BF的中點(diǎn)時(shí),請(qǐng)直接寫出AF與FH的數(shù)量關(guān)系.發(fā)布:2025/6/20 10:30:1組卷:532引用:2難度:0.3
相關(guān)試卷