已知曲線y=x+lnx在點(diǎn)(1,1)處的切線與曲線y=ax2+(a+2)x+1相切,則a=88.
【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.
【答案】8
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:6279引用:70難度:0.7
相似題
-
1.直線y=
x+b是曲線y=lnx的一條切線,則實(shí)數(shù)b的值為( ?。?/h2>12A.2 B.ln2+1 C.ln2-1 D.ln2 發(fā)布:2025/1/7 12:30:6組卷:63引用:5難度:0.9 -
2.設(shè)曲線
在點(diǎn)(1,1)處的切線與直線ax+y+1=0垂直,則a=( ?。?/h2>y=lnxx+1A.-1 B. 12C. -12D.1 發(fā)布:2024/12/29 15:30:4組卷:39引用:3難度:0.7 -
3.曲線y=lnx上一點(diǎn)P和坐標(biāo)原點(diǎn)O的連線恰好是該曲線的切線,則點(diǎn)P的橫坐標(biāo)為( )
A.e2 B. eC.e D.2 發(fā)布:2025/1/3 16:0:5組卷:12引用:6難度:0.7