閱讀下列材料,回答問(wèn)題:
“我們把多項(xiàng)式a2+2ab+b2及a2-2ab+b2叫做完全平方式”.如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問(wèn)題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問(wèn)題或求代數(shù)式最大值、最小值等,例如:分解因式x2+2x-3,我們可以進(jìn)行以下操作:x2+2x-3=(x2+2x+1)-4=(x+1)2-4,再利用平方差公式可得x2+2x-3=(x+3)(x-1);再如:求代數(shù)式2x2+4x-6的最小值,我們可以將代數(shù)式進(jìn)行如下變形:2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,于是由平方的非負(fù)性可知,當(dāng)x=-1時(shí),2x2+4x-6有最小值-8.
根據(jù)閱讀材料,用配方法解決下列問(wèn)題:
(1)若多項(xiàng)式x2-4x+k是一個(gè)完全平方式,則常數(shù)k=44.
(2)分解因式:x2-4x-12=(x+2)(x-6)(x+2)(x-6),代數(shù)式2x2-8x-24的最小值為 -32-32.
(3)試判斷代數(shù)式a2+2b2+11與2ab+2a+4b的大小,并說(shuō)明理由.
【考點(diǎn)】因式分解的應(yīng)用.
【答案】4;(x+2)(x-6);-32
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 10:0:2組卷:914引用:7難度:0.6
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿(mǎn)足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫(xiě)明驗(yàn)證過(guò)程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6
把好題分享給你的好友吧~~