請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
梅涅勞斯( Menelaus)是公元一世紀(jì)時(shí)的希臘數(shù)學(xué)家兼天文學(xué)家,著有幾何學(xué)和三角學(xué)方面的許多書籍.梅涅勞斯發(fā)現(xiàn),三角形各邊(或其延長(zhǎng)線)被一條不過任何一個(gè)頂點(diǎn)也不與任何一條邊平行的直線所截,這條直線可能與三角形的兩條邊相交(一定還會(huì)與一條邊的延長(zhǎng)線相交),也可能與三條邊都不相交(與三條邊的延長(zhǎng)線都相交).他進(jìn)行了深入研究并證明了著名的梅涅勞斯定理(簡(jiǎn)稱梅氏定理):
設(shè)D,E,F(xiàn)依次是△ABC的三邊AB,BC,CA或其延長(zhǎng)線上的點(diǎn),且這三點(diǎn)共線,則滿足ADDB?BEEC?CFFA=1.
這個(gè)定理的證明步驟如下:
情況①:如圖1,直線DE交△ABC的邊AB于點(diǎn)D,交邊AC于點(diǎn)F,交邊BC的延長(zhǎng)線于點(diǎn)E.
過點(diǎn)C作CM∥DE交AB于點(diǎn)M,則BEEC=BDDM,ADDM=AFFC(依據(jù))
∴BEEC?ADDM=BDDM?AFFC
∴BE?AD?FC=BD?AF?EC,即ADDB?BEEC?CFFA=1.

情況②:如圖2,直線DE分別交△ABC的邊BA,BC,CA的延長(zhǎng)線于點(diǎn)D,E,F(xiàn).
…
(1)情況①中的依據(jù)指:兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段成比例兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段成比例
(2)請(qǐng)你根據(jù)情況①的證明思路完成情況②的證明.
(3)如圖3,D,F(xiàn)分別是△ABC的邊AB,AC上的點(diǎn),且AD:DB=CF:FA=2:3,連接DF并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E,那么BE:CE=9494.
AD
DB
?
BE
EC
?
CF
FA
=
1
BE
EC
=
BD
DM
AD
DM
=
AF
FC
BE
EC
?
AD
DM
BD
DM
?
AF
FC
AD
DB
?
BE
EC
?
CF
FA
=
1
9
4
9
4
【考點(diǎn)】相似形綜合題.
【答案】兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段成比例;
9
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:828引用:3難度:0.1
相似題
-
1.如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動(dòng)點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),移動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),DP⊥AC?
②設(shè)S△APQ+S△DCQ=y,寫出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動(dòng)到第幾秒到第幾秒之間時(shí),y取得最小值.發(fā)布:2025/7/1 13:0:6組卷:2102引用:6難度:0.1 -
2.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連接CD.過點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下四個(gè)結(jié)論:①
=AGAB;②若點(diǎn)D是AB的中點(diǎn),則AF=AFFCAB;③當(dāng)B、C、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結(jié)論序號(hào)是( )12發(fā)布:2025/6/24 16:30:1組卷:2783引用:11難度:0.2 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點(diǎn)F,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),有AE=EF成立;
【數(shù)學(xué)思考】某數(shù)學(xué)興趣小組在探究AE、EF的關(guān)系時(shí),運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,通過驗(yàn)證得出如下結(jié)論:
當(dāng)點(diǎn)E是直線BC上(B,C除外)任意一點(diǎn)時(shí)(其它條件不變),結(jié)論AE=EF仍然成立.
假如你是該興趣小組中的一員,請(qǐng)你從“點(diǎn)E是線段BC上的任意一點(diǎn)”;“點(diǎn)E是線段BC延長(zhǎng)線上的任意一點(diǎn)”;“點(diǎn)E是線段BC反向延長(zhǎng)線上的任意一點(diǎn)”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應(yīng)用】當(dāng)點(diǎn)E在線段BC的延長(zhǎng)線上時(shí),若CE=BC,在備用圖2中畫出圖形,并運(yùn)用上述結(jié)論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1873引用:6難度:0.1
相關(guān)試卷