已知圓M的方程為x2+(y-3)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(1)若點P的坐標為(1,12),求切線PA,PB的方程;
(2)求四邊形PAMB面積的最小值;
(3)求證:經過A,P,M三點的圓必過定點,并求出所有定點坐標.
(
1
,
1
2
)
【考點】直線與圓的位置關系.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/8 1:0:8組卷:93難度:0.5
相似題
-
1.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
,則實數a的值是( ?。?/h2>3發(fā)布:2025/1/5 18:30:5組卷:109難度:0.6 -
2.已知x,y滿足x2+y2=1,則
的最小值為( ?。?/h2>y-2x-1發(fā)布:2024/12/29 10:30:1組卷:27難度:0.9 -
3.已知圓C:x2+y2+2ay=0(a>0)截直線
所得的弦長為3x-y=0,則圓C與圓C':(x-1)2+(y+1)2=1的位置關系是( ?。?/h2>23發(fā)布:2025/1/1 11:0:5組卷:86引用:4難度:0.6