用幾個小的長方形、正方形拼成一個大的正方形,然后利用兩種不同的方法計算這個大的正方形的面積,可以得到一個等式.例如:計算圖1的面積,把圖1看作一個大正方形,它的面積是(a+b)2;如果把圖1看作是由2個長方形和2個小正方形組成的,它的面積為a2+2ab+b2,由此得到(a+b)2=a2+2ab+b2.
(1)如圖2,由幾個面積不等的小正方形和幾個小長方形拼成一個邊長為(a+b+c)的正方形,從中你能發(fā)現(xiàn)什么結(jié)論?該結(jié)論用等式表示為 (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)利用(1)中的結(jié)論解決以下問題:已知a+b+c=10,ab+ac+bc=38,求a2+b2+c2的值;
(3)如圖3,由正方形ABCD邊長為a,正方形CEFG邊長為b,點D,G,C在同一直線上,連接BD,DF,若a-b=2,ab=3,求圖3中陰影部分的面積.
【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:562引用:5難度:0.4
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2500引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6
把好題分享給你的好友吧~~