從1、2、…、n(n≥2)中等可能地獨立抽樣兩次,記兩次的結(jié)果分別為隨機變量X和Y,記號max{X,Y}表示X、Y中的較大者.
(1)若做放回抽樣,求An=E[max{X,Y}];
(2)若做不放回抽樣,求Bn=E[max{X,Y}];
(3)計算Bn-An,比較An與Bn的大小,并嘗試定性解釋:為何{Bn-An}會有這樣的變化趨勢?
(可能需要用到的公式:12+22+…+n2=n(n+1)(2n+1)6)
1
2
+
2
2
+
…
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:37引用:1難度:0.4
相似題
-
1.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7